PCSK9 is implicated in familial hypercholesterolemia via targeting the cell surface PCSK9-LDLR complex toward lysosomal degradation. The M2 repeat in the PCSK9's C-terminal domain is essential for its extracellular function, potentially through its interaction with an unidentified "protein X". The M2 repeat was recently shown to bind an R-x-E motif in MHC-class-I proteins (implicated in the immune system), like HLA-C, and causing their lysosomal degradation. These findings suggested a new role of PCSK9 in the immune system and that HLA-like proteins could be "protein X" candidates. However, the participation of each member of the MHC-I protein family in this process and their regulation of PCSK9's function have yet to be determined. Herein, we compared the implication of MHC-I-like proteins such as HFE (involved in iron homeostasis) and HLA-C on the extracellular function of PCSK9. Our data revealed that the M2 domain regulates the intracellular sorting of the PCSK9-LDLR complex to lysosomes, and that HFE is a new target of PCSK9 that inhibits its activity on the LDLR, whereas HLA-C enhances its function. This work suggests the potential modulation of PCSK9's functions through interactions of HFE and HLA-C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119474 | PMC |
http://dx.doi.org/10.3390/cells13100857 | DOI Listing |
JOR Spine
December 2024
Department of Orthopedics, Xuanwu Hospital Capital Medical University Beijing China.
Background: Lumbar disc degeneration (LDD) is a ubiquitous finding in low back pain. Many different etiology factors may explain the LDD process, such as bone morphogenetic proteins (BMPs), DNA methylation, and gut microbiota. Until recently the mechanisms underlying the LDD process have been elusive.
View Article and Find Full Text PDFBMJ
December 2024
Danish Red Blood Cell Center, Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Objectives: To test whether haemochromatosis C282Y homozygotes have increased risk of diabetes, liver disease, and heart disease even when they have normal plasma iron, transferrin saturation, or ferritin concentrations and to test whether C282Y homozygotes with diabetes, liver disease, or heart disease have increased mortality compared with non-carriers with these diseases.
Design: Prospective cohort study.
Setting: Three Danish general population cohorts: the Copenhagen City Heart Study, the Copenhagen General Population Study, and the Danish General Suburban Population Study.
Hematology Am Soc Hematol Educ Program
December 2024
Department of Medicine, University of Verona and EuroBloodNet Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.
The term hemochromatosis refers to a group of genetic disorders characterized by hepcidin insufficiency in the context of normal erythropoiesis, iron hyperabsorption, and expansion of the plasma iron pool with increased transferrin saturation, the diagnostic hallmark of the disease. This results in the formation of toxic non-transferrin-bound iron, which ultimately accumulates in multiple organs, including the liver, heart, endocrine glands, and joints. The most common form is HFE-hemochromatosis (HFE-H) due to p.
View Article and Find Full Text PDFCommun Biol
December 2024
BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
Iron homoeostasis is tightly regulated, with hepcidin and soluble transferrin receptor (sTfR) playing significant roles. However, the genetic determinants of these traits and the biomedical consequences of iron homoeostasis variation are unclear. In a meta-analysis of 12 cohorts involving 91,675 participants, we found 43 genomic loci associated with either hepcidin or sTfR concentration, of which 15 previously unreported.
View Article and Find Full Text PDFClin Biochem
January 2025
Division of Clinical Chemistry, Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!