Diabetic retinopathy (DR) affects over 140 million people globally. The mechanisms that lead to blindness are still enigmatic but there is evidence that sustained inflammation and hypoxia contribute to vascular damage. Despite efforts to understand the role of inflammation and microglia in DR's pathology, the contribution of astrocytes to hypoxic responses is less clear. To investigate the role of astrocytes in hypoxia-induced retinopathy, we utilized a 7-day systemic hypoxia model using the GFAP-Cre:Rosa26 transgenic mouse line. This allows for the induction of inflammatory reactive astrogliosis following tamoxifen and diphtheria toxin administration. We hypothesize that DTx-induced astrogliosis is neuroprotective during hypoxia-induced retinopathy. Glial, neuronal, and vascular responses were quantified using immunostaining, with antibodies against GFAP, vimentin, IBA-1, NeuN, fibrinogen, and CD31. Cytokine responses were measured in both the brain and serum. We report that while both DTx and hypoxia induced a phenotype of reduced microglia morphological activation, DTx, but not hypoxia, induced an increase in the Müller glia marker vimentin. We did not observe that the combination of DTx and hypoxic treatments exacerbated the signs of reactive glial cells, nor did we observe a significant change in the expression immunomodulatory mediators IL-1β, IL2, IL-4, IL-5, IL-6, IL-10, IL-18, CCL17, TGF-β1, GM-CSF, TNF-α, and IFN-γ. Overall, our results suggest that, in this hypoxia model, reactive astrogliosis does not alter the inflammatory responses or cause vascular damage in the retina.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117533 | PMC |
http://dx.doi.org/10.3390/biom14050567 | DOI Listing |
Korean J Neurotrauma
December 2024
Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea.
Spinal cord injury (SCI) following high-energy trauma often leads to lasting neurologic deficits and severe socioeconomic impact. Effective neurointensive care, particularly in the early stages post-injury, is essential for optimizing outcomes. This review discusses the role of neurointensive care in managing SCI, emphasizing early assessment, stabilization, and intervention strategies based on recent evidence-based practices.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
December 2023
School of Life Sciences, University of Sussex, Brighton, UK.
Current cardiac biomarkers, troponins and brain natriuretic peptide, are primarily used to assist in the diagnosis or exclusion of myocardial damage and congestive heart failure, respectively. The use of these biomarkers in chemotherapy-induced cardiotoxicity has been evaluated by various studies. However, neither biomarker provides early predictive value, leaving many cancer survivors with irreversible cardiac injury.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People's Republic of China.
Purpose: Myocardial infarction (MI) is a prevalent cardiovascular disorder affecting individuals worldwide. There is a need to identify more effective therapeutic agents to minimize cardiomyocyte damage and enhance cardioprotection. extract is extensively used to treat neurological disorders and peripheral vascular diseases.
View Article and Find Full Text PDFJ Innov Card Rhythm Manag
December 2024
Department of Electrophysiology, MedStar Health: Heart and Vascular Institute at MedStar Washington Hospital Center, Washington, DC, USA.
Leadless pacemakers (LPs) are emerging options for bradyarrhythmias. However, extraction can be risky if the device is in an unfavorable position. We present a challenging case of a Nanostim LP (NLP) (Abbott Medical Inc.
View Article and Find Full Text PDFTetrahedron
February 2025
Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States.
Antibody-drug conjugates (ADCs) have advanced as a mainstay among the most promising cancer therapeutics, offering enhanced antigen targeting and encompassing wide diversity in their linker and payload components. Small-molecule inhibitors of tubulin polymerization have found success as payloads in FDA approved ADCs and represent further promise in next-generation, pre-clinical and developmental ADCs. Unique dual-mechanism payloads (previously designed and synthesized in our laboratories) function as both potent antiproliferative agents and promising vascular disrupting agents capable of imparting selective and effective damage to tumor-associated microvessels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!