Effects of on Cucumber Seedling Growth and Photosynthetic System under Different Potassium Ion Levels.

Biology (Basel)

Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China.

Published: May 2024

Potassium deficiency is one of the important factors restricting cucumber growth and development. This experiment mainly explored the effect of () on cucumber seedling growth and the photosynthetic system under different potassium levels, and the rhizosphere bacteria (PGPR) that promote plant growth were used to solubilize potassium in soil, providing theoretical support for a further investigation of the effect of biological bacteria fertilizer on cucumber growth and potassium absorption. "Xinjin No. 4" was used as the test material for the pot experiment, and a two-factor experiment was designed. The first factor was potassium application treatment, and the second factor was bacterial application treatment. The effects of different treatments on cucumber seedling growth, photosynthetic characteristics, root morphology, and chlorophyll fluorescence parameters were studied. The results showed that potassium and had obvious promotion effects on the cucumber seedling growth and the photosynthesis of leaves. Compared with the blank control, the treatment had obvious effects on the cucumber seedling height, stem diameter, leaf area, total root length, total root surface area, total root volume, branch number, crossing number, g, WUE, Ci, and A; the dry weight of the shoot and root increased significantly ( ≤ 0.05). Potassium application could significantly promote cucumber growth, and the effect of and potassium application was greater than that of potassium application alone, and the best effect was when 0.2 g/pot and were applied. In conclusion, potassium combined with could enhance the photosynthesis of cucumber leaves and promote the growth of cucumber.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117608PMC
http://dx.doi.org/10.3390/biology13050348DOI Listing

Publication Analysis

Top Keywords

cucumber seedling
20
seedling growth
16
potassium application
16
effects cucumber
12
growth photosynthetic
12
cucumber growth
12
total root
12
potassium
11
growth
9
cucumber
9

Similar Publications

Cadmium (Cd), as one of the most toxic nonessential elements, severely prohibits plant growth and development. Hydrogen sulfide (HS) and methyl jasmonate (MeJA) play essential roles in plant response to abiotic stress. However, the potential mechanism of HS and MeJA in alleviating Cd stress in plants remains unclear.

View Article and Find Full Text PDF

Foliar application of nitrates limits lead uptake by Cucumis sativus L. plants.

J Trace Elem Med Biol

January 2025

Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warszawa 02-096, Poland.

Lead is a toxic heavy metal, which accumulates in the soil and is readily absorbed by plant roots. The uptake of toxic elements by crops is a serious threat to human health. For this reason, it is important to prevent the incorporation of heavy metals into the food chain.

View Article and Find Full Text PDF

Brassinosteroid Enhances Cucumber Stress Tolerance to NaHCO by Modulating Nitrogen Metabolism, Ionic Balance and Phytohormonal Response.

Plants (Basel)

December 2024

Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.

Under NaHCO stress, exogenous 24-epibrassinolide (EBR) markedly alleviated Na accumulation in cucumber plants, thereby decreasing the Na/K, Na/Mg, and Na/Ca ratios. This mitigation was accompanied by elevated concentrations of K, Ca, and Mg, as well as enhanced expression of the and genes. In addition, the activities of plasma membrane H-ATPase, vesicular membrane H-ATPase, and vesicular membrane H-PPase were significantly increased, contributing to the maintenance of ionic balance in cucumber plants.

View Article and Find Full Text PDF

Improvement of plant growth and fruit quality by introducing a phosphoribosylpyrophosphate synthetase mutation into Methylorubrum populi.

J Appl Microbiol

January 2025

School of Life Sciences, Qingdao Agricultural University, No.700 Changcheng Road, Chengyang District, Qingdao 266000, People's Republic of China.

Aims: The aim of this study was to evaluate the impact of the introduction of a phosphoribosylpyrophosphate synthetase (PRS) mutation into a plant growth-promoting strain of Methylorubrum on the enhancement of phyllosphere colonization, with the ultimate goal of improving plant growth and quality.

Methods And Results: A strain of Methylorubrum populi (named HS04) was isolated from the groundnut leaves and found to process the plant-promoting traits, including the ability to produce indole acetic acid, siderophore, 1-aminocyclopropane-1-carboxylate deaminase, and to fix nitrogen. The application via foliar spray significantly increased the fresh weight of cucumber seedlings cultivated in a standard growth chamber, with 43.

View Article and Find Full Text PDF

Selenium has the function of bio-stimulating hormone. However, the underlying physiological and molecular mechanisms of melatonin and abscisic acid as secondary messengers in improving cold tolerance by selenium are limited. This study investigated the effects of selenite on the cold stress of cucumber seedlings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!