Leaf senescence is the last stage of leaf development, and it is accompanied by a leaf color change. In some species, anthocyanins are accumulated during leaf senescence, which are vital indicators for both ornamental and commercial value. Therefore, it is essential to understand the molecular mechanism of anthocyanin accumulation during leaf senescence, which would provide new insight into autumn coloration and molecular breeding for more colorful plants. Anthocyanin accumulation is a surprisingly complex process, and significant advances have been made in the past decades. In this review, we focused on leaf coloration during senescence. We emphatically discussed several networks linked to genetic, hormonal, environmental, and nutritional factors in regulating anthocyanin accumulation during leaf senescence. This paper aims to provide a regulatory model for leaf coloration and to put forward some prospects for future development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117936 | PMC |
http://dx.doi.org/10.3390/biology13050329 | DOI Listing |
J Plant Physiol
December 2024
Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
Calcium-dependent protein kinases (CDPKs) are very effective calcium signal decoders due to their unique structure, which mediates substrate-specific [Ca] signalling through phosphorylation. However, Ca-dependence makes it challenging to study CDPKs. This work focused on the effects of the overexpression of native and modified forms of the AtCPK1 gene on the tolerance of tobacco plants to heat and cold.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
Melatonin is considered a multifunctional stress metabolite and a novel plant hormone affecting seed germination, root architecture, circadian rhythms, leaf senescence, and fruit ripening. Melatonin functions related to plant adaptation to stress stimuli of various natures are considered especially important. One of the key components of melatonin's stress-protective action is its ability to neutralise reactive oxygen species (ROS) and reactive nitrogen species directly.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China. Electronic address:
Salt damage is a major issue that causes a decline in crop yield. WRKY transcription factors (TFs) extensively regulate plant biotic and abiotic stress responses, growth, and development. WRKY45 is crucial in regulating leaf senescence, low phosphorus responses, and cadmium stress response in Arabidopsis.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
Promoting tumor cell senescence arrests the cell cycle of tumor cells and activates the immune system to eliminate these senescent cells, thereby suppressing tumor growth. Nevertheless, PD-L1 positive senescent tumor cells resist immune clearance and possess the ability to secret various cytokines and inflammatory factors that stimulate the growth of tumor cells. Consequently, drugs capable of both triggering senescence in tumor cells and concurrently diminishing the expression of PD-L1 to counteract immune evasion are urgently needed.
View Article and Find Full Text PDFPlant Biol (Stuttg)
December 2024
Echigo-Matsunoyama Museum of Natural Science 'Kyororo', Tokamachi, Niigata, Japan.
Autumn leaf colour brightness is an important cultural ecosystem service. As its spatial patterns and ecophysiological mechanisms remain unclear, we analysed relationships among autumn leaf colour brightness, late summer chlorophyll content, and topographic position in both canopy-based micro-scale analysis and site-based macro-scale analysis. Multispectral drone observations were made in three Fagus crenata forests at elevations of 300, 600, and 900 m in Niigata Prefecture, Japan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!