Connexins (Cxs) are a family of integral membrane proteins, which function as both hexameric hemichannels (HCs) and dodecameric gap junction channels (GJCs), behaving as conduits for the electrical and molecular communication between cells and between cells and the extracellular environment, respectively. Their proper functioning is crucial for many processes, including development, physiology, and response to disease and trauma. Abnormal GJC and HC communication can lead to numerous pathological states including inflammation, skin diseases, deafness, nervous system disorders, and cardiac arrhythmias. Over the last 15 years, high-resolution X-ray and electron cryomicroscopy (cryoEM) structures for seven Cx isoforms have revealed conservation in the four-helix transmembrane (TM) bundle of each subunit; an αβ fold in the disulfide-bonded extracellular loops and inter-subunit hydrogen bonding across the extracellular gap that mediates end-to-end docking to form a tight seal between hexamers in the GJC. Tissue injury is associated with cellular Ca overload. Surprisingly, the binding of 12 Ca ions in the Cx26 GJC results in a novel electrostatic gating mechanism that blocks cation permeation. In contrast, acidic pH during tissue injury elicits association of the N-terminal (NT) domains that sterically blocks the pore in a "ball-and-chain" fashion. The NT domains under physiologic conditions display multiple conformational states, stabilized by protein-protein and protein-lipid interactions, which may relate to gating mechanisms. The cryoEM maps also revealed putative lipid densities within the pore, intercalated among transmembrane α-helices and between protomers, the functions of which are unknown. For the future, time-resolved cryoEM of isolated Cx channels as well as cryotomography of GJCs and HCs in cells and tissues will yield a deeper insight into the mechanisms for channel regulation. The cytoplasmic loop (CL) and C-terminal (CT) domains are divergent in sequence and length, are likely involved in channel regulation, but are not visualized in the high-resolution X-ray and cryoEM maps presumably due to conformational flexibility. We expect that the integrated use of synergistic physicochemical, spectroscopic, biophysical, and computational methods will reveal conformational dynamics relevant to functional states. We anticipate that such a wealth of results under different pathologic conditions will accelerate drug discovery related to Cx channel modulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117596 | PMC |
http://dx.doi.org/10.3390/biology13050298 | DOI Listing |
Cell
December 2024
Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA; Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, San Juan 00901, Puerto Rico. Electronic address:
Synaptic configurations underpin how the nervous system processes sensory information to produce a behavioral response. This is best understood for chemical synapses, and we know far less about how electrical synaptic configurations modulate sensory information processing and context-specific behaviors. We discovered that innexin 1 (INX-1), a gap junction protein that forms electrical synapses, is required to deploy context-specific behavioral strategies underlying thermotaxis behavior in C.
View Article and Find Full Text PDFPLoS One
December 2024
Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland.
Gap junction intercellular communication (GJIC) between two adjacent cells involves direct exchange of cytosolic ions and small molecules via connexin gap junction channels (GJCs). Connexin GJCs have emerged as drug targets, with small molecule connexin inhibitors considered a viable therapeutic strategy in several diseases. The molecular mechanisms of GJC inhibition by known small molecule connexin inhibitors remain unknown, preventing the development of more potent and connexin-specific therapeutics.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.
While membrane proteins such as ion channels continuously turn over and require replacement, the mechanisms of specificity of efficient channel delivery to appropriate membrane subdomains remain poorly understood. GJA1-20k is a truncated Connexin43 (Cx43) isoform arising from translation initiating at an internal start codon within the same parent GJA1 mRNA and is requisite for full-length Cx43 trafficking to cell borders. GJA1-20k does not have a full transmembrane domain, and it is not known how GJA1-20k enables forward delivery of Cx43 hemichannels.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China. Electronic address:
Ethnopharmacological Relevance: Comus officinalis Sieb. et Zucc has significant neuroprotective activity and has been widely studied for its potential to improve cognitive function. Our team's previous research has found that loganin isolated from Comus officinalis has an antidepressant effect.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology, National Engineering Research Center of Wide Band-Gap Semiconductor, School of Microelectronics, Xidian University, Xi'an 710071, China.
This study systematically investigates the effects of anode metals (Ti/Au and Ni/Au) with different work functions on the electrical and temperature characteristics of β-GaO-based Schottky barrier diodes (SBDs), junction barrier Schottky diodes (JBSDs) and P-N diodes (PNDs), utilizing Silvaco TCAD simulation software, device fabrication and comparative analysis. From the perspective of transport characteristics, it is observed that the SBD exhibits a lower turn-on voltage and a higher current density. Notably, the V of the Ti/Au anode SBD is merely 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!