Fault Diagnosis Method for Space Fluid Loop Systems Based on Improved Evidence Theory.

Entropy (Basel)

Key Laboratory of Space Utilization, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, China.

Published: May 2024

Addressing the challenges posed by the complexity of the structure and the multitude of sensor types installed in space application fluid loop systems, this paper proposes a fault diagnosis method based on an improved D-S evidence theory. The method first employs the Gaussian affiliation function to convert the information acquired by sensors into BPA functions. Subsequently, it utilizes a pignistic probability transformation to convert the multiple subset focal elements into single subset focal elements. Finally, it comprehensively evaluates the credibility and uncertainty factors between evidences, introducing Bray-Curtis dissimilarity and belief entropy to achieve the fusion of conflicting evidence. The proposed method is initially validated on the classic Iris dataset, demonstrating its reliability. Furthermore, when applied to fault diagnosis in space application fluid circuit loop pumps, the results indicate that the method can effectively fuse multiple sensors and accurately identify faults.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119483PMC
http://dx.doi.org/10.3390/e26050427DOI Listing

Publication Analysis

Top Keywords

fault diagnosis
12
diagnosis method
8
fluid loop
8
loop systems
8
based improved
8
evidence theory
8
space application
8
application fluid
8
subset focal
8
focal elements
8

Similar Publications

Background: High-resolution brain imaging is crucial in clinical diagnosis and neuroscience, with ultra-high field strength MRI systems ( ) offering significant advantages for imaging neuronal microstructures. However, achieving magnetic field homogeneity is challenging due to engineering faults during the installation of superconducting strip windings and the primary magnet.

Purpose: This study aims to design and optimize active superconducting shim coils for a 7 T animal MRI system, focusing on the impact of safety margin, size, and adjustability of the second-order shim coils on the MRI system's optimization.

View Article and Find Full Text PDF

Diagnosis of Reverse-Connection Defects in High-Voltage Cable Cross-Bonded Grounding System Based on ARO-SVM.

Sensors (Basel)

January 2025

Hubei Key Laboratory of Power Equipment & System Security for Integrated Energy, School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China.

High-voltage (HV) cables are increasingly used in urban power grids, and their safe operation is critical to grid stability. Previous studies have analyzed various defects, including the open circuit in the sheath loop, the flooding in the cross-bonded link box, and the sheath grounding fault. However, there is a paucity of research on the defect of the reverse direction between the inner core and the outer shield of the coaxial cable.

View Article and Find Full Text PDF

Geometry-Based Synchrosqueezing S-Transform with Shifted Instantaneous Frequency Estimator Applied to Gearbox Fault Diagnosis.

Sensors (Basel)

January 2025

Heime (Tianjin) Electrical Engineering Systems Co., Ltd., Tianjin 301700, China.

This paper introduces a novel geometry-based synchrosqueezing S-transform (GSSST) for advanced gearbox fault diagnosis, designed to enhance diagnostic precision in both planetary and parallel gearboxes. Traditional time-frequency analysis (TFA) methods, such as the Synchrosqueezing S-transform (SSST), often face challenges in accurately representing fault-related features when significant mode closely spaced components are present. The proposed GSSST method overcomes these limitations by implementing an intuitive geometric reassignment framework, which reassigns time-frequency (TF) coefficients to maximize energy concentration, thereby allowing fault components to be distinctly isolated even under challenging conditions.

View Article and Find Full Text PDF

Induction motors are essential components in industry due to their efficiency and cost-effectiveness. This study presents an innovative methodology for automatic fault detection by analyzing images generated from the Fourier spectra of current signals using deep learning techniques. A new preprocessing technique incorporating a distinctive background to enhance spectral feature learning is proposed, enabling the detection of four types of faults: healthy motor coupled to a generator with a broken bar (HGB), broken rotor bar (BRB), race bearing fault (RBF), and bearing ball fault (BBF).

View Article and Find Full Text PDF

This study proposes a novel rolling bearing fault diagnosis technique based on a synchrosqueezing wavelet transform (SWT) and a transfer residual convolutional neural network (TRCNN) designed to address the difficulties of feature extraction caused by the non-stationarity of fault signals, as well as the issue of low fault diagnosis accuracy resulting from small sample quantities. This approach transforms the one-dimensional vibration signal into time-frequency diagrams using an SWT based on complex Morlet wavelet basis functions, which redistributes (squeezes) the values of the wavelet coefficients at different localized points in a time-frequency plane to the estimated instantaneous frequencies. This allows the energy to be more fully concentrated in actual corresponding frequency components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!