Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spin qubits in semiconductor quantum dots are an attractive candidate for scalable quantum information processing. Reliable quantum state transfer and entanglement between spatially separated spin qubits is a highly desirable but challenging goal. Here, we propose a fast and high-fidelity quantum state transfer scheme for two spin qubits mediated by virtual microwave photons. Our general strategy involves using a superadiabatic pulse to eliminate non-adiabatic transitions, without the need for increased control complexity. We show that arbitrary quantum state transfer can be achieved with a fidelity of 95.1% within a 60 ns short time under realistic parameter conditions. We also demonstrate the robustness of this scheme to experimental imperfections and environmental noises. Furthermore, this scheme can be directly applied to the generation of a remote Bell entangled state with a fidelity as high as 97.6%. These results pave the way for fault-tolerant quantum computation on spin quantum network architecture platforms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119106 | PMC |
http://dx.doi.org/10.3390/e26050379 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!