Intrinsic Information-Theoretic Models.

Entropy (Basel)

Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain.

Published: April 2024

With this follow-up paper, we continue developing a mathematical framework based on information geometry for representing physical objects. The long-term goal is to lay down informational foundations for physics, especially quantum physics. We assume that we can now model information sources as univariate normal probability distributions N (μ, σ0), as before, but with a constant σ0 not necessarily equal to 1. Then, we also relaxed the independence condition when modeling sources of information. Now, we model sources with a multivariate normal probability distribution Nm(μ,Σ0) with a constant variance-covariance matrix Σ0 not necessarily diagonal, i.e., with covariance values different to 0, which leads to the concept of modes rather than sources. Invoking Schrödinger's equation, we can still break the information into quantum harmonic oscillators, one for each mode, and with energy levels independent of the values of σ0, altogether leading to the concept of "intrinsic". Similarly, as in our previous work with the estimator's variance, we found that the expectation of the quadratic Mahalanobis distance to the sample mean equals the energy levels of the quantum harmonic oscillator, being the minimum quadratic Mahalanobis distance at the minimum energy level of the oscillator and reaching the "intrinsic" Cramér-Rao lower bound at the lowest energy level. Also, we demonstrate that the global probability density function of the collective mode of a set of quantum harmonic oscillators at the lowest energy level still equals the posterior probability distribution calculated using Bayes' theorem from the sources of information for all data values, taking as a prior the Riemannian volume of the informative metric. While these new assumptions certainly add complexity to the mathematical framework, the results proven are invariant under transformations, leading to the concept of "intrinsic" information-theoretic models, which are essential for developing physics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11119449PMC
http://dx.doi.org/10.3390/e26050370DOI Listing

Publication Analysis

Top Keywords

quantum harmonic
12
energy level
12
information-theoretic models
8
mathematical framework
8
model sources
8
normal probability
8
probability distribution
8
harmonic oscillators
8
energy levels
8
leading concept
8

Similar Publications

The CN stretch frequency of neutral, gas-phase 9-cyanoanthracene is 2207 cm (4.531 μm) based on high-resolution infrared absorption experiments coupled with a new hybrid anharmonic quantum chemical methodology. A broad band (full-width at half-maximum of 47 cm) is observed and assigned to multiple transitions, including the CN stretch fundamental and various combination bands that gather intensity from strong anharmonic coupling with the bright CN stretch.

View Article and Find Full Text PDF

Hybrid superconductor-semiconductor Josephson field-effect transistors (JoFETs) function as Josephson junctions with gate-tunable critical current. Additionally, they can feature a non-sinusoidal current-phase relation (CPR) containing multiple harmonics of the superconducting phase difference, a so-far underutilized property. Here we exploit this multi-harmonicity to create a Josephson circuit element with an almost perfectly π-periodic CPR, indicative of a largely dominant charge-4e supercurrent transport.

View Article and Find Full Text PDF

The Group-Algebraic Formalism of Quantum Probability and Its Applications in Quantum Statistical Mechanics.

Entropy (Basel)

January 2025

Department of Physics and Fujian Provincial Key Laboratory of Low Dimensional Condensed Matter Physics, Xiamen University, Xiamen 361005, China.

We show that the theory of quantum statistical mechanics is a special model in the framework of the quantum probability theory developed by mathematicians, by extending the characteristic function in the classical probability theory to the quantum probability theory. As dynamical variables of a quantum system must respect certain commutation relations, we take the group generated by a Lie algebra constructed with these commutation relations as the bridge, so that the classical characteristic function defined in a Euclidean space is transformed to a normalized, non-negative definite function defined in this group. Indeed, on the quantum side, this group-theoretical characteristic function is equivalent to the density matrix; hence, it can be adopted to represent the state of a quantum ensemble.

View Article and Find Full Text PDF

Deciphering the abnormal IR spectral density of phthalic acid dimer crystals: Unveiling the role of the dynamical effects of the Davydov coupling and the mechanisms of relaxation.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Physics Department, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia. Electronic address:

To consistently determine the anomalous characteristics of phthalic acid crystal (PAC) derivatives, we performed quantum dynamics simulations of the infrared spectral density of the h-PAC and d-PAC isotopomers that show up in the H/D isotopic frequency domain at two different temperatures viz. 77 and 298 K. A theoretical framework explaining the dynamical cooperative interactions within the hydrogen bonds (HBs) in the PAC crystals across a simulation of IR spectral density of the stretching band was developed.

View Article and Find Full Text PDF

The development of accurate yet fast quantum mechanical methods to calculate the anharmonic vibrational spectra of large molecules is one of the major goals of ongoing developments in this field. This study extensively explores and validates a hybrid electronic basis set approach for anharmonic vibrational calculations, where the molecule is segregated into different computational layers, and such layers are then treated with different levels of electronic basis sets. Following the system-bath model, the atoms corresponding to the active sites are treated in more accurate but computationally slower, large basis set and the rest of the atoms in less accurate but computationally faster, small basis set to construct the anharmonic hybrid potential energy surface (PES).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!