Bacteria form an intense portion of reading and learning for students enrolled in microbiology education. As a part of the foundational course outline of bacteriology, bacterial classification is a significant topic of discussion. The purpose of our study was to analyze whether bacterial classification can be taught with a phylogenetic tree approach that might be more engaging and beneficial to student learners of microbiology. This methodology is unique compared to the conventional approach applied in introductory lectures of bacteriology that relies on morphology and Gram-staining to classify bacteria. The participants of this study were students enrolled in a two-semester medical school bridge program that offers a Master's degree in Pre-clinical Sciences. We presented bacterial origin and classification in the light of evolution and used a phylogenetic tree to signify clinically relevant groups of bacteria. Students were also taught the traditional bacterial classification using Gram stains and morphology. Both methods of classification were delivered in a didactic classroom session considering equal time spent and utilizing the same format. An online survey was distributed to the students after the session to collect their feedback. The results from the survey showed that 74% of participants would prefer learning bacterial classification using a combined approach that includes both Gram-staining and morphology as well as the phylogenetic tree. When asked if the study of bacterial classification through an evolutionary tree diagram is a clear and concise way of understanding bacteria, 79% of the students either agreed or strongly agreed with this statement. Interestingly, the alternative phylogenetic tree approach was considered more engaging and regarded as a means to expand the clinical knowledge of bacteria by 78% and 71% of the students, respectively. Overall, our study strongly supports the use of tree-based classification as an additional method to improve the learning of medically important groups of bacteria at varying levels of education.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360412PMC
http://dx.doi.org/10.1128/jmbe.00185-22DOI Listing

Publication Analysis

Top Keywords

bacterial classification
20
phylogenetic tree
16
medical school
8
school bridge
8
bridge program
8
students enrolled
8
classification
8
tree approach
8
groups bacteria
8
bacteria
6

Similar Publications

The gram-negative, facultative anaerobic bacterium Morganella morganii is linked to a number of illnesses, including nosocomial infections and urinary tract infections (UTIs). A clinical isolate from a UTI patient in Bangladesh was subjected to high-throughput whole genome sequencing and extensive bioinformatics analysis in order to gather knowledge about the genomic basis of bacterial defenses and pathogenicity in M. morganii.

View Article and Find Full Text PDF

A novel bacterium, designated 19SA41, was isolated from the air of the Icelandic volcanic island Surtsey. Cells of strain 19SA41 are Gram-stain-negative, strictly aerobic, non-motile rods and form pale yellow-pigmented colonies. The strain grows at 4-30 °C (optimum, 22 °C), at pH 6-10 (optimum, pH 7.

View Article and Find Full Text PDF

Endophytes are bacteria that inhabit host plants for most of their life cycle without causing harm. In the study, 15 endophytic bacteria were isolated from 30 forage Sorghum plants and assessed for various plant growth-promoting (PGP) traits, such as phosphate solubilization, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, ammonia production, siderophore production, gibberellic acid production, Indole-3-acetic acid (IAA) production, and zinc solubilization. One isolate, JJG_Zn, demonstrated multiple PGP activities and was identified as Enterobacter sp.

View Article and Find Full Text PDF

Classification and characteristics of bacterial glycosaminoglycan lyases, and their therapeutic and experimental applications.

J Cell Sci

January 2025

National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China.

Glycosaminoglycans (GAGs), as animal polysaccharides, are linked to proteins to form various types of proteoglycans. Bacterial GAG lyases are not only essential enzymes that spoilage bacteria use for the degradation of GAGs, but also valuable tools for investigating the biological function and potential therapeutic applications of GAGs. The ongoing discovery and characterization of novel GAG lyases has identified an increasing number of lyases suitable for functional studies and other applications involving GAGs, which include oligosaccharide sequencing, detection and removal of specific glycan chains, clinical drug development and the design of novel biomaterials and sensors, some of which have not yet been comprehensively summarized.

View Article and Find Full Text PDF

Members of the families Thermosynechococcaceae and Thermostichaceae are well-known unicellular thermophilic cyanobacteria and a non-thermophilic genus was newly classified into the former. Analysis of the codon usage bias (CUB) of cyanobacterial species inhabiting different thermal and non-thermal niches will benefit the understanding of their genetic and evolutionary characteristics. Herein, the CUB and codon context patterns of protein-coding genes were systematically analyzed and compared between members of the two families.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!