To elucidate the mechanism and origins of chemo- and enantioselectivities of the reaction between aliphatic aldehydes and hydrazones catalyzed by triazolium-derived NHC, density functional theory computations have been performed. According to our calculated results, the whole catalytic cycle for the formation of dihydropyridazinones proceeds via the initial nucleophilic addition of NHC to an aliphatic aldehyde, followed by the concerted intramolecular proton transfer and C-Cl bond cleavage. Subsequent deprotonation generates an enolate intermediate. The enolate intermediate then undergoes 1,4-addition to hydrazone to construct a new carbon-carbon bond. The following ring-closure would lead to a six-membered ring intermediate, which, upon the release of NHC, affords the final product dihydropyridazinone. The computation results reveal that intramolecular proton transfer is significantly promoted by the Brønsted acid DIPEA·H. The carbon-carbon bond formation step could determine not only the chemoselectivity but also the stereoselectivity and lead to the -isomer product. It was found that the stereoselectivity arises from a combination of weak interactions, including C-H···O, C-H···N, C-H···π, and LP···π. NHC could enhance the nucleophilicity of the aliphatic aldehyde and facilitate further reaction with hydrazone. This work could be beneficial for the development of new catalytic strategies in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.4c02479 | DOI Listing |
Acc Chem Res
January 2025
Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.
ConspectusThe manipulation of strained rings is a powerful strategy for accessing the valuable chemical frameworks present in natural products and active pharmaceutical ingredients. Aziridines, the smallest N-containing heterocycles, have long served as building blocks for constructing more complex amine-containing scaffolds. Traditionally, the reactivity of typical aziridines has been focused on ring-opening by nucleophiles or the formation of 1,3-dipoles.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
Allylic ethers and alcohols are essential structural motifs commonly present in natural products and pharmaceuticals. Direct allylic C-H oxygenation of internal alkenes is one of the most direct methods, bypassing the necessity for an allylic leaving group that is needed in the traditional Tsuji-Trost reaction. Herein, we develop an efficient and practical method for synthesizing (E)-allyl ethers from readily available internal alkenes and alcohols or phenols via selective allylic C-H oxidation.
View Article and Find Full Text PDFOrg Lett
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China.
We present a versatile palladium-catalyzed glycosylation platform that enables facile access to structurally diverse N-O-linked glycosides with constantly excellent regio- and stereoselectivities. Importantly, this approach offers a broad substrate scope, low catalyst loadings, and outstanding chemoselectivity, allowing for the selective reaction of oximes/hydroximic acids over hydroxyl groups that would otherwise pose challenges in conventional glycosylation methods. The synthetic utility of this method is further exemplified through a range of synthetic transformations and late-stage modification of bioactive molecules.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry and Biochemistry, Augustana University, Sioux Falls, SD 57197, USA.
This study examined the chemoselectivity and diastereoselectivity of silyl nitronate alkenyn-nitroethers in Intramolecular Silyl Nitronate Cycloadditions (ISNCs) to produce isoxazole derivatives with interesting medicinal properties. These reactions resulted in the formation of either dihydrofuro[3,4-c]isoxazolines/isoxazolidines and/or alkynyl moieties attached to 2,5-dihydrofuryl carbonyls. This study also discerned the diastereoselectivities of the resulting cyclic adducts and compared them to previous findings.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
The Scripps Research Institute, Department of Chemistry, 10550 North Torrey pines Road, BCC-169, 92037, La Jolla, UNITED STATES OF AMERICA.
Electrochemical, fully stereoselective P(V)-radical hydrophosphorylation of olefins and carbonyl compounds using a P(V) reagent is disclosed. By strategically selecting the anode material, radical reactivity is accessible for alkene hydrophosphorylation whereas a polar pathway operates for ketone hydrophosphorylation. The mechanistic intricacies of these chemoselective transformations were explored in-depth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!