The objective of the study was to create a reliable method that could be used to evaluate the particle size distribution of samples and pre-mixes in real-world situations, particularly those consisting of typical formulation blends. The goal was to use this method to assess the uniformity of the samples and ensure that they met the required quality standards. The researchers aimed to create a method that could be easily incorporated into the manufacturing process, providing a practical and efficient solution. This study demonstrates the use of ImageJ software to analyze the particle size distribution (PSD) of powders. The technique produces qualitative data from microscopy images and quantitative data from analysis of parameters including average diameter, , , and standard deviation. The method was tested with various treatments, showing differentiating outcomes in all cases. The alternate technique provides a rapid and cost-effective method for PSD analysis, surpassing the limitations of sieve analysis. Extensive testing of the method, using a variety of sample types, including typical formulation blends, was performed. The results suggest that the method can effectively assess the morphology of changing materials during batch manufacturing and characterize uniformity in blends. The methodology has the capability to identify attributes related to PSD that are typically required to be monitored during manufacturing. The technique allows for accurate and reliable quantification of the attributes through image capture technology. The technique has future potential and has important implications for material science, powder rheology, pharmaceutical formulation development, and continual process monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03639045.2024.2358366DOI Listing

Publication Analysis

Top Keywords

particle size
12
size distribution
12
typical formulation
8
formulation blends
8
method
7
technique
5
novel image
4
image processing
4
processing technique
4
technique weighted
4

Similar Publications

Mutual suppression of MnO and SiO in an innovative anode design for enhanced cycling stability.

Chem Commun (Camb)

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

We designed a SiO@C/MnO composite material with ultrafine particle size using a simple sol-gel method and calcination process. SiO and MnO components produce a mutual suppression effect during the charge/discharge process to mitigate volume expansion and maintain the long-term stability of composite.

View Article and Find Full Text PDF

The study of degradation behavior of electrocatalysts in an industrial context calls for rapid and efficient analysis methods. Optical methods like Raman spectroscopy fulfil these requirements and are thus predestined for this purpose. However, the iridium utilized in proton exchange membrane electrolysis (PEMEL) is Raman inactive in its metallic state.

View Article and Find Full Text PDF

Background: Nanosuspension has emerged as an effective, lucrative, and unequalled approach for efficiently elevating the dissolution and bioavailability of aqueous soluble drugs. Diverse challenges persist within this domain, demanding further comprehensive investigation and exploration.

Objective: This study aims to design, develop, optimise formulation and process variables, and characterise the stabilised aqueous dissolvable nanosuspension using chlorthalidone as a BCS class- IV drug.

View Article and Find Full Text PDF

As tailpipe emissions have decreased, there is a growing focus on the relative contribution of non-exhaust sources of vehicle emissions. Addressing these emissions is key to better evaluating and reducing vehicles' impact on air quality and public health. Tailoring solutions for different non-exhaust sources, including brake emissions, is essential for achieving sustainable mobility.

View Article and Find Full Text PDF

The current chemotherapy treatments for liver cancer have shown limited effectiveness. Therefore, there is an urgent need to develop new drugs to combat this disease more effectively. This study reports synthesis of cobalt oxide nanoparticles coated with glucose, and conjugated with Ellagic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!