Variability in the bioconcentration of selenium (Se) by primary producers at the base of the food web results in uncertainty in predictions of bioaccumulation and ecological risk to higher trophic level organisms. Water chemistry, speciation of Se, and periphyton community composition have all been suggested as factors that contribute to variability in bioconcentration by primary producers; however, the role of physiological composition of periphyton species in influencing the bioconcentration of Se has not been previously evaluated. To determine if a relationship exists between algal protein content and Se accumulation, Parachlorella kessleri, Chlorella vulgaris, and Raphidocelis subcapitata were exposed to Se (as selenate) and analyzed for total protein and tissue Se content in the exponential and stationary growth phases. Protein content and Se accumulation in R. subcapitata in the stationary phase were also measured under two light intensities. No relationship between cellular protein content and Se accumulation was found for algae in the exponential phase; however, a strong relationship was found in the stationary phase among species and for R. subcapitata under differing light intensities. Absolute Se accumulations by P. kessleri, C. vulgaris, and R. subcapitata in the stationary phase were statistically different; however, the concentrations of Se in protein were similar across species. These results suggest that cellular protein content in microalgae influences Se bioconcentration and that algal protein content may improve Se bioaccumulation modeling in food webs. Integr Environ Assess Manag 2024;00:1-10. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ieam.4946 | DOI Listing |
Chem Biodivers
January 2025
Yatsen Global Innovation R&D Center, Yatsen Global Innovation R&D Center, No. 11 Building, No. 210, Wenshui Road, Jingan District, Shanghai, CHINA.
A new depside glucoside rosarugoside E (1), together with four known compounds punicalagin (2), corilagin (3), granatin B (4) and ellagic acid (5) were isolated from the ethanol extract of pomegranate (Punica granatum L.) flower. Their structures were identified based on careful analysis of various spectral data including UV, IR, HR-ESI-MS, 1D and 2D NMR.
View Article and Find Full Text PDFIntroduction: Age-associated depletion in nicotinamide adenine dinucleotide (NAD+) concentrations has been implicated in metabolic, cardiovascular, and neurodegenerative disorders. Supplementation with NAD+ precursors, such as nicotinamide riboside (NR), offers a potential therapeutic avenue against neurodegenerative pathologies in aging, Alzheimer's disease, and related dementias. A crossover, double-blind, randomized placebo (PBO) controlled trial was conducted to test the safety and efficacy of 8 weeks' active treatment with NR (1 g/day) on cognition and plasma AD biomarkers in older adults with subjective cognitive decline and mild cognitive impairment.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Empa Swiss Federal Laboratories for Material Science and Technology, ETH Zurich, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.
This study detected the macronutrients retained in glutinous rice (GR) under different drying conditions by innovatively applying visible-near infrared hyperspectral imaging coupled with different spectra preprocessing and effective wavelength selection techniques (EWs). Subsequently, predictive models were developed based on processed spectra for the detection of the macronutrients, which include protein content (PC), moisture content (MC), fat content (FC), and ash content (AC). The result shows the raw spectra-based model had a prediction accuracy ( ) of 0.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People's Republic of China.
Introduction: Oxidative stress is an important cause of acetaminophen (APAP)-induced liver injury (AILI). Sakuranetin (Sak) is an antitoxin from the cherry flavonoid plant with good antioxidant effects. However, whether sakuranetine has a protective effect on APAP-induced liver injury is not clear.
View Article and Find Full Text PDFTheranostics
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
The EGFR-driven angiogenesis is crucial in solid tumors, particularly through the delivery of biomolecules via extracellular vesicles (EVs), but the mechanism by which EGFR regulates EV cargo is still unclear. First, cell co-culture and murine tumor models were employed to examine the impact of EGFR overexpression on the pro-angiogenic properties of small EVs (sEVs) derived from oral squamous cell carcinoma (OSCC). Small RNA sequencing was then used to compare the miRNA profiles of OSCC-sEVs with and without EGFR overexpression, followed by functional enrichment and motif analyses of the differentially expressed miRNAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!