Microsporidia and Apicomplexa are eukaryotic, single-celled, intracellular parasites with huge public health and economic importance. Typically, these parasites are studied separately, emphasizing their uniqueness and diversity. In this review, we explore the huge amount of genomic data that has recently become available for the two groups. We compare and contrast their genome evolution and discuss how their transitions to intracellular life may have shaped it. In particular, we explore genome reduction and compaction, genome expansion and ploidy, gene shuffling and rearrangements, and the evolution of centromeres and telomeres.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jeu.13033DOI Listing

Publication Analysis

Top Keywords

genome evolution
8
intracellular parasites
8
microsporidia apicomplexa
8
genome
4
evolution intracellular
4
parasites microsporidia
4
apicomplexa microsporidia
4
apicomplexa eukaryotic
4
eukaryotic single-celled
4
single-celled intracellular
4

Similar Publications

Small, obligately anaerobic strains 13CB8C, 13CB11C, 13CB18C and 13GAM1G were isolated from a faecal sample in a patient with Parkinson's disease with a history of duodenal resection. After conducting a comprehensive polyphasic taxonomic analysis including genomic analysis, we propose the establishment of one new genus and four new species. The novel bacteria are sp.

View Article and Find Full Text PDF

Helminths infection of Schizothorax niger in Kashmir, India: morphological and molecular characterization.

Mol Biol Rep

January 2025

Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, India.

Background: The identification of helminth parasites in Schizothorax spp. from Kashmir, including Schyzocotyle acheilognathi, Pomphorhynchus kashmirensis, and Adenoscolex oreini, is hindered by morphological limitations and high intraspecific variation. While previous studies have relied on morphological diagnosis, a comprehensive molecular characterization is lacking.

View Article and Find Full Text PDF

Unveiling the ghost: machine learning's impact on the landscape of virology.

J Gen Virol

January 2025

Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.

The complexity and speed of evolution in viruses with RNA genomes makes predictive identification of variants with epidemic or pandemic potential challenging. In recent years, machine learning has become an increasingly capable technology for addressing this challenge, as advances in methods and computational power have dramatically improved the performance of models and led to their widespread adoption across industries and disciplines. Nascent applications of machine learning technology to virus research have now expanded, providing new tools for handling large-scale datasets and leading to a reshaping of existing workflows for phenotype prediction, phylogenetic analysis, drug discovery and more.

View Article and Find Full Text PDF

East Asia and the Pacific Surveillance Metrics and History of the COVID-19 Pandemic: Updated Epidemiological Assessment.

JMIR Public Health Surveill

January 2025

Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, 420 E. Superior, Chicago, US.

Background: This study updates the COVID-19 pandemic surveillance in East Asia and the Pacific we first conducted in 2020 with two additional years of data for the region.

Objective: First, we measure whether there was an expansion or contraction of the pandemic in East Asia and the Pacific region when the World Health Organization (WHO) declared the end of the COVID-19 public health emergency of international concern on May 5, 2023. Second, we use dynamic and genomic surveillance methods to describe the dynamic history of the pandemic in the region and situate the window of the WHO declaration within the broader history.

View Article and Find Full Text PDF

Characterization and genomic insights into bacteriophages Kpph1 and Kpph9 against hypervirulent carbapenem-resistant .

Virulence

December 2025

Jiangxi Institute of Respiratory Disease, Jiangxi Clinical Research Center for Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China.

The increasing incidence of infections attributed to hypervirulent carbapenem-resistant (Hv-CRKp) is of considerable concern. Bacteriophages, also known as phages, are viruses that specifically infect bacteria; thus, phage-based therapies offer promising alternatives to antibiotic treatments targeting Hv-CRKp infections. In this study, two isolated bacteriophages, Kpph1 and Kpph9, were characterized for their specificity against the Hv-CRKp NUHL30457 strain that possesses a K2 capsule serotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!