Thermal bubble-driven micro-pumps are an upcoming micro-actuator technology that can be directly integrated into micro/mesofluidic channels, have no moving parts, and leverage existing mass production fabrication approaches. These micro-pumps consist of a high-power micro-resistor that boils fluid in microseconds to create a high-pressure vapor bubble which performs mechanical work. As such, these micro-pumps hold great promise for micro/mesofluidic systems such as lab-on-a-chip technologies. However, to date, no current work has studied the interaction of these micro-pumps with biofluids such as blood and protein-rich fluids. In this study, the effects of organic fouling due to egg albumin and bovine whole blood are characterized using stroboscopic high-speed imaging and a custom deep learning neural network based on transfer learning of RESNET-18. It was found that the growth of a fouling film inhibited vapor bubble formation. A new metric to quantify the extent of fouling was proposed using the decrease in vapor bubble area as a function of the number of micro-pump firing events. Fouling due to egg albumin and bovine whole blood was found to significantly degrade pump performance as well as the lifetime of thermal bubble-driven micro-pumps to less than 10 firings, which may necessitate the use of protective thin film coatings to prevent the buildup of a fouling layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08927014.2024.2353034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!