In conventional ratiometric photoelectrochemical (PEC) sensors, the detection and reference signals are output sequentially from two independent photosensitive materials. In such a "two-to-two" ratiometric mode, unavoidable difference during dual-interface modification exists, resulting in questionable ratiometric signals and detection results. To address this issue, we propose a novel "one-to-two" ratiometric PEC sensor on a single electrode interface through pH-modulated band alignment engineering. The double ratiometric signals are generated by the synergistic action of a pH-responsive CuTCPP/WS photoelectric substrate material and the i-motif sensing tool. Specifically, a ternary heterostructure to generate a photoanodic detection signal is formed under alkaline conditions between CuTCPP/WS and signal label CdS QDs binding to the i-motif. While under acidic conditions, a photocurrent polarity conversion and signaling labels detachment, induced by the band realignment of CuTCPP/WS and the i-motif conformational switching, produce a reliable internal reference photocathodic signal. The feasibility of this two-wing signal generation strategy is validated by detecting mycotoxin ochratoxin A, which achieves accurate and reliable ratio detection results. Overall, this work provides guidance for the design of a PEC ratiometric determination system and exhibits great potential to be applied in practical analysis research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c00608 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
The structure of many native tissues consists of aligned collagen (Col) fibrils, some of which are further composited with dispersed hydroxyapatite (HAp) nanocrystals. Accurately mimicking this inherent structure is a promising approach to enhance scaffold biocompatibility in tissue engineering. In this study, biomimetic sheets composed of highly aligned Col fibrils were fabricated using a plastic compression and tension method, followed by the deposition of HAp nanocrystals on the surface via an alternate soaking method.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Physical Science and Technology, ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai, 201210, P. R. China.
Over the years, great efforts have been devoted in introducing a sizable and tunable band gap in graphene for its potential application in next-generation electronic devices. The primary challenge in modulating this gap has been the absence of a direct method for observing changes of the band gap in momentum space. In this study, advanced spatial- and angle-resolved photoemission spectroscopy technique is employed to directly visualize the gap formation in bilayer graphene, modulated by both displacement fields and moiré potentials.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China.
Developing heavy-metal-free materials with wide tunable emission is important to light-emitters. The alloying method is utilized in ZnSe magic size clusters (MSCs) with Te to form ZnSeTe and manipulate the band gap structure in ZnSe. The growth of ZnTe on alloyed ZnSeTe quantum dots (QDs) forms ZnSeTe/ZnTe core/shell nanostructures, showing the tunable photoluminescence emission peak from 450 to 760 nm with the different thicknesses of ZnTe shell.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have received significant interest for use in tunnel field-effect transistors (TFETs) due to their ultrathin layers and tunable band gap features. In this study, we used density functional theory (DFT) to investigate the electronic properties of six TMD heterostructures, namely, MoSe/HfS, MoTe/ZrS, MoTe/HfS, WSe/HfS, WTe/ZrS, and WTe/HfS, focusing on variations in band alignments. We demonstrate that WTe/ZrS and WTe/HfS have the smallest band gaps (close to 0 or broken) from the considered set.
View Article and Find Full Text PDFLangmuir
January 2025
ESYCOM, CNRS-UMR 9007, Université Gustave Eiffel, F-77454 Marne-la-Vallée, France.
This study investigates the synthesis, characterization, and functional properties of well-aligned zinc oxide (ZnO) nanowires (NWs) obtained by a two-step hydrothermal method. ZnO NWs were grown on silicon substrates precoated with a ZnO seed layer. The growth process was conducted at 90 °C for different durations (2, 3, and 4 h) to examine the time-dependent evolution of the nanowire properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!