Reprogramming tendon healing: a guide to novel molecular tools.

Front Bioeng Biotechnol

Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands.

Published: May 2024

AI Article Synopsis

  • Tendons are commonly injured, leading to impaired movement and often requiring surgical intervention, which can result in slow recovery and scar tissue formation.
  • The field of regenerative medicine is exploring non-coding RNAs (like siRNAs, miRNAs, and lncRNAs) as potential solutions for improving tendon healing.
  • These molecules serve as epigenetic regulators that can enhance tendon differentiation and regeneration, showcasing promising advances in tendon tissue engineering.

Article Abstract

Tendons are a frequent site of injury, which greatly impairs the movement and locomotion of patients. Regrettably, injuries at the tendon frequently require surgical intervention, which leads to a long path to recovery. Moreover, the healing of tendons often involves the formation of scar tissue at the site of injury with poor mechanical properties and prone to re-injury. Tissue engineering carries the promise of better and more effective solutions to the improper healing of tendons. Lately, the field of regenerative medicine has seen a significant increase in the focus on the potential use of non-coding RNAs (e.g., siRNAs, miRNAs, and lncRNAs) as molecular tools for tendon tissue engineering. This class of molecules is being investigated due to their ability to act as epigenetic regulators of gene expression and protein production. Thus, providing a molecular instrument to fine-tune, reprogram, and modulate the processes of tendon differentiation, healing, and regeneration. This review focuses particularly on the latest advances involving the use of siRNAs, miRNAs, and lncRNAs in tendon tissue engineering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11112497PMC
http://dx.doi.org/10.3389/fbioe.2024.1379773DOI Listing

Publication Analysis

Top Keywords

tissue engineering
12
molecular tools
8
site injury
8
healing tendons
8
sirnas mirnas
8
mirnas lncrnas
8
tendon tissue
8
reprogramming tendon
4
healing
4
tendon healing
4

Similar Publications

Evaluation of dose calculation method with a combination of Monte Carlo method and removal-diffusion equation in heterogeneous geometry for boron neutron capture therapy.

Biomed Phys Eng Express

January 2025

Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, JAPAN.

Clinical research in boron neutron capture therapy (BNCT) has been conducted worldwide. Currently, the Monte Carlo (MC) method is the only dose calculation algorithm implemented in the treatment planning system for the clinical treatment of BNCT. We previously developed the MC-RD calculation method, which combines the MC method and the removal-diffusion (RD) equation, for fast dose calculation in BNCT.

View Article and Find Full Text PDF

Vanin-1-Activated Fluorescent Probe for Real-Time Imaging of Inflammatory Responses Across Multiple Tissue Types.

Anal Chem

January 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.

Vanin-1 is a pantetheine hydrolase that plays a key role in inflammatory diseases. Effective tools for noninvasive, real-time monitoring of Vanin-1 are lacking, largely due to background fluorescence interference in existing probes. To address this issue, we developed a dual-modal fluorescent and colorimetric probe, MB-Van1, to detect Vanin-1 with high sensitivity and selectivity.

View Article and Find Full Text PDF

Dynamic Peptide Nanoframework-Guided Protein Coassembly: Advancing Adhesion Performance with Hierarchical Structures.

J Am Chem Soc

January 2025

Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.

Hierarchical structures are essential in natural adhesion systems. Replicating these in synthetic adhesives is challenging due to intricate molecular mechanisms and multiscale processes. Here, we report three phosphorylated peptides featuring a hydrophobic self-assembly motif linked to a hydrophilic phosphorylated sequence (pSGSS), forming peptide fibril nanoframeworks.

View Article and Find Full Text PDF

Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.

View Article and Find Full Text PDF

Modifications to rhesus macaque TCR constant regions improve TCR cell surface expression.

PLoS One

January 2025

AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America.

T cell immunotherapy success is dependent on effective levels of antigen receptor expressed at the surface of engineered cells. Efforts to optimize surface expression in T cell receptor (TCR)-based therapeutic approaches include optimization of cellular engineering methods and coding sequences, and reducing the likelihood of exogenous TCR α and β chains mispairing with the endogenous TCR chains. Approaches to promote correct human TCR chain pairing include constant region mutations to create an additional disulfide bond between the two chains, full murinization of the constant region of the TCR α and β sequences, and a minimal set of murine mutations to the TCR α and β constant regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!