Glass microfluidic chips are suitable for coupling with mass spectrometry (MS) due to their flexible design, optical transparency and resistance to organic reagents. However, due to the high hardness and brittleness of glass, there is a lack of simple and feasible technology to manufacture a monolithic nanospray ionization (nESI) emitter on a glass microchip, which hinders its coupling with mass spectrometry. Here, a continuous fluid-assisted etching strategy is proposed to fabricate monolithic three-dimensional (3D) nESI emitters integrated into glass microchips. A continuous fluid of methanol is adopted to protect the inner wall of the channels and the bonding interface of the glass microfluidic chip from being wet-etched, forming sharp 3D nESI emitters. The fabricated 3D nESI emitter can form a stable electrospray plume, resulting in consistent nESI detection of acetylcholine with an RSD of 4.5% within 10 min. The fabricated 3D emitter is integrated on a glass microfluidic chip designed with a T-junction droplet generator, which can realize efficient analysis of acetylcholine in picoliter-volume droplets by nESI-MS. Stability testing of over 20 000 droplets detected by the established system resulted in an RSD of 9.1% over approximately 180 min. The detection of ten neurochemicals in rat cerebrospinal fluid droplets is achieved. The established glass droplet microfluidic chip-MS system exhibits potential for broad applications such as neurochemical monitoring and single-cell analysis in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110156 | PMC |
http://dx.doi.org/10.1039/d4sc01700e | DOI Listing |
Sci Rep
January 2025
Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
We engineered a microfluidic platform to study the effects of bioactive glass nanoparticles (BGNs) on cell viability under static culture. We incorporated different concentrations of BGNs (1%, 2%, and 3% w/v) in collagen hydrogel (with a concentration of 3.0 mg/mL).
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
This study describes a microfluidic thread-based analytical device (μTAD) capable of in situ mass spectrometric analysis for continuous flow reaction monitoring. Organic reaction screening is foundational to drug discovery. Microfluidic devices are of special interest here because they provide continuous reaction monitoring with advantages such as the use of smaller reagent volumes and short analysis times.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032.
Time-resolved cryo-EM (TRCEM) makes it possible to provide structural and kinetic information on a reaction of biomolecules before the equilibrium is reached. Several TRCEM methods have been developed in the past to obtain key insights into the mechanism of action of molecules and molecular machines on the time scale of tens to hundreds of milliseconds, which is unattainable by the normal blotting method. Here we present our TRCEM setup utilizing a polydimethylsiloxane (PDMS)-based microfluidics chip assembly, comprising three components: a PDMS-based, internally SiO-coated micromixer, a glass-capillary microreactor, and a PDMS-based microsprayer for depositing the reaction product onto the EM grid.
View Article and Find Full Text PDFMater Today Bio
December 2024
State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China.
The field of microfluidics has experienced rapid growth in the last several decades, yet it isn't considered to be a large industry comparable to semiconductor and consumer electronics. In this review, we analyzed the entire process of the transformation from research findings to commercialized products in microfluidics, as well as the significant gap during the whole developing process between microchip fabrication in R&D and large-scale production in the industry. We elaborated in detail on various materials in the microfluidics industry, including silicon, glass, PDMS, and thermoplastics, discussing their characteristics, production processes, and existing products.
View Article and Find Full Text PDFRSC Adv
December 2024
Physics of Fluids Group, Max Planck University of Twente Center for Complex Fluid Dynamics, University of Twente P.O. Box 217 7500 AE Enschede The Netherlands
Microfluidics plays a crucial role in the generation of mono-sized microdroplet emulsions. Traditional glass microfluidic chips typically lack versatility in generating curable droplets of arbitrary liquids due to the inherent hydrophilic nature of glass and to fabrication constraints. To overcome this, we designed a microdroplet generator with 3D flow-focusing capabilities that can be 3D-printed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!