Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Only miniscrews [temporary anchoring devices, (TADs)] can provide absolute anchorage during orthodontic treatment. Titanium (Ti) is a fundamental material used in the production of miniscrews, but it has many disadvantages. Polyaryletheretherketone (PEEK) may have various benefits in the production of miniscrews. Finite element analysis (FEA) is a valid and reliable method for calculating stress, strain, and loading forces on complex structures and can be more time- and cost-efficient.
Objective: To investigate the biomechanical performance of Ti and PEEK as miniscrew biomaterials employing FEA.
Materials And Methods: This study is a 3-D (3D) simulation with FEA. First, 3D miniscrew modeling is done using Ti base material and PEEK (1.4 mm × 6 mm size), as well as 3D inter-radicular space bone modeling. The simulation was performed by modeling the insertion angles (30°, 60°, and 90°) and applying a 200-gram loading force. The biomechanical performance of the miniscrew was then determined using FEA.
Results: As the angle of insertion increases, the tension on the bone decreases, the stress on the TADs increases, and the bone deformation decreases. Compared to TADs made of Ti and PEEK, TADs made of PEEK alone cause more bone stress than TADs made of Ti. The distortion in the maxilla is observed to be larger than in the mandibular.
Conclusion: PEEK has greater stress on the bones than Ti and may be prospected as an alternative biomaterial for TAD fabrication, as documented in the FEA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11114449 | PMC |
http://dx.doi.org/10.4103/jos.jos_102_23 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!