Programmable nucleases-based genome editing systems offer several advantages, such as high editing efficiency, high product purity, and fewer editing by-products. They have been widely used in biopharmaceutical research and crop engineering. Given the diverse needs for research and application, developing functional base editors has become a major focus in the field of genome editing. Currently, genome editing systems derived from clustered regularly interspaced short palindromic repeats and CRISPR-associated (CRISPR-Cas) and transcription activator-like effector (TALE) systems include single base editors, dual base editors, mitochondrial base editors, and CRISPR-related transposase systems. This review provides a comprehensive overview of the development of base editing systems, summarizes the characteristics, off-target effects, optimization, and improvement strategies of various base editors, and provides insights for further improvement and application of genome editing systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13345/j.cjb.230615 | DOI Listing |
Vet Res
January 2025
UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.
View Article and Find Full Text PDFSyst Rev
January 2025
Statistical Laboratory, Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, UK.
Background: Scientific papers increasingly put forward scientific-based policy recommendations (SPRs) as a means of closing the circle of science, policy and practice. Assessing the quality of such SPRs is crucial, especially within the context of a systematic review. Here, we present ECR-P (Evidence Communication Rules for Policy)-a critical appraisal tool that we have developed, which can be used in assessing not only the quality of SPRs but also the quality of their evidence base and how effectively these have both been communicated.
View Article and Find Full Text PDFbioRxiv
December 2024
Spotlight Therapeutics, Hayward, CA, USA.
Genetic medicines, including CRISPR/Cas technologies, extend tremendous promise for addressing unmet medical need in inherited retinal disorders and other indications; however, there remain challenges for the development of therapeutics. Herein, we evaluate genome editing by engineered Cas9 ribonucleoproteins (eRNP) in vivo via subretinal administration using mouse and pig animal models. Subretinal administration of adenine base editor and double strand break-inducing Cas9 nuclease eRNPs mediate genome editing in both species.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, China.
The Cas12j-8 nuclease, derived from the type V CRISPR system, is approximately half the size of Cas9 and recognizes a 5'-TTN-3' protospacer adjacent motif sequence, thus potentially having broad application in genome editing for crop improvement. However, its editing efficiency remains low in plants. In this study, we rationally engineered both the crRNA and the Cas12j-8 nuclease.
View Article and Find Full Text PDFStargardt disease is a currently untreatable, inherited neurodegenerative disease that leads to macular degeneration and blindness due to loss-of-function mutations in the ABCA4 gene. We have designed a dual adeno-associated viral vector encoding a split-intein adenine base editor to correct the most common mutation in ABCA4 (c.5882G>A, p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!