Objective: Our primary objective was to investigate the variability of oxytocin (OT) and the GAMEN binding motif within the LNPEP oxytocinase in primates.

Materials And Methods: We sequenced the LNPEP segment encompassing the GAMEN motif in 34 Platyrrhini species, with 21 of them also sequenced for the OT gene. Our dataset was supplemented with primate sequences of LNPEP, OT, and the oxytocin receptor (OTR) sourced from public databases. Evolutionary analysis and coevolution predictions were made followed by the macroevolution analysis of relevant amino acids associated with phenotypic traits, such as mating systems, parental care, and litter size. To account for phylogenetic structure, we utilized two distinct statistical tests. Additionally, we calculated binding energies focusing on the interaction between Callithtrix jacchus VAMEN and ProOT.

Results: We identified two novel motifs (AAMEN and VAMEN), challenging the current knowledge of motif conservation in placental mammals. Coevolution analysis demonstrated a correlation between GAMEN, AAMEN, and VAMEN and their corresponding OTs and OTRs. Callithrix jacchus exhibited a higher binding energy between VAMEN and ProOT than orthologous molecules found in humans (GAMEN and LeuOT).

Discussion: The coevolution of AAMEN and VAMEN with their corresponding OTs and OTRs suggests a functional relationship that could have contributed to specific reproductive and adaptive behaviors, including paternal care, social monogamy, and twin births, prominent traits in Cebidae species, such as marmosets and tamarins. Our findings underscore the coevolution of taxon-specific amino acids among the three studied molecules, shedding light on the oxytocinergic system as an adaptive epistatic repertoire in primates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajpa.24947DOI Listing

Publication Analysis

Top Keywords

aamen vamen
12
amino acids
8
vamen corresponding
8
corresponding ots
8
ots otrs
8
vamen
5
molecular variations
4
variations behavioral
4
behavioral adaptations
4
adaptations unveiling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!