Purpose: Microglia-related inflammation is closely linked to the pathogenesis of retinal diseases. The primary objective of this research was to investigate the impact and mechanism of M1 phenotype microglia on the barrier function of retina microvascular endothelial cells.
Methods: Quantitative polymerase chain reactions and western blot techniques were utilized to analysis the mRNA and protein expressions of M1 and M2 markers of human microglial clone 3 cell line (HMC3), as well as the levels of Notch ligands and receptors under the intervention of lipopolysaccharide (LPS) or interleukin (IL)-4. ELISA was utilized to detect the pro-inflammatory and anti-inflammatory cytokines from HMC3 cells. The cellular tight junction and apoptosis of human retinal microvascular endothelial cells (HRMECs) were assessed by western blot and fluorescein isothiocyanate-dextran permeability assay. The inhibitors of Notch1 and RNA interference (RNAi) targeting Jagged1 were used to assess their contribution to the barrier function of vascular endothelial cells.
Results: Inducible nitric oxide synthase (iNOS) and IL-1β were considerably elevated in LPS-treated HMC3, while CD206 and Arg-1 markedly elevated under IL-4 stimulation. The conditioned medium derived from LPS-treated HMC3 cells promoted permeability, diminished the expression of zonula occludens-1 and Occludin, and elevated the expression of Cleaved caspase-3 in HRMECs. RNAi targeting Jagged1 or Notch1 inhibitor could block M1 HMC3 polarization and maintain barrier function of HRMECs.
Conclusion: Our findings suggest that Jagged1-Notch1 signaling pathway induces M1 microglial cells to disrupt the barrier function of HRMECs, which may lead to retinal diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02713683.2024.2357601 | DOI Listing |
Mol Carcinog
January 2025
Department of Neurosurgery, Huanggang Central Hospital of Yangtze University, Huanggang, China.
Glioblastoma (GBM) is the most common malignant primary brain tumor, with a mean survival of less than 2 years. Unique brain structures and the microenvironment, including blood-brain barriers, put great challenges on clinical drug development. Sophoricoside (Sop), an isoflavone glycoside isolated from seeds of Sophora japonica L.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China.
In traditional binary heterojunction catalysts, mismatched energy band structures lead to higher electron transfer barriers. By reducing the work function difference a ternary Ru-RuS/MoS heterostructure, we developed a HER catalyst with remarkable activity (17 mV@10 mA cm) and excellent stability (300 h@500 mA cm).
View Article and Find Full Text PDFJ Eval Clin Pract
February 2025
School of Primary and Allied Health Care, Monash University, Melbourne, Australia.
Background: Clinical practice guidelines (CPGs) are moving toward greater consideration of population-level differences, like health inequities, when creating management recommendations. CPGs have the potential to reduce or perpetuate health inequities. The intrinsic design factors of electronic interfaces that contain CPGs are known barriers to guideline use.
View Article and Find Full Text PDFTranscult Psychiatry
January 2025
Department of Psychological Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
COVID-19-related lockdowns resulted in strict visiting restrictions in care homes, placing a vulnerable population at further risk of functional and cognitive decline, and psychological difficulties due to isolation. Experiences of vulnerable minority groups of older persons who reside in care homes are not well researched. In New Zealand, the Chinese community is a fast-growing ethnic group that faces challenges such as language barriers, differing cultural beliefs and COVID-19-related discrimination.
View Article and Find Full Text PDFChem Sci
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou Jiangsu 215123 China
Understanding the oxygen reduction reaction (ORR) mechanism and accurately characterizing the reaction interface are essential for improving fuel cell efficiency. We developed an active learning framework combining machine learning force fields and enhanced sampling to explore the dynamics and kinetics of the ORR on Fe-N/C using a fully explicit solvent model. Different possible reaction paths have been explored and the O adsorption process is confirmed as the rate-determining step of the ORR at the Fe-N/C-water interface, which needs to overcome a free energy barrier of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!