To realize a low-cost neuromorphic visual system, employing an artificial neuron capable of mimicking the retinal neuron functions is essential. A photoresponsive single transistor neuron composed of a vertical silicon nanowire is proposed. Similar to retinal neurons, various photoresponsive characteristics of the single transistor neuron can be modulated by light intensity as well as wavelength and have a high responsivity to green light like the human eye. The device is designed with a cylindrical surrounding double-gate structure, enclosed by an independently controlled outer gate and inner gate. The outer gate has the function of selectively inhibiting neuron activity, which can mimic lateral inhibition of amacrine cells to ganglion cells, and the inner gate can be utilized for the adjustment of the firing threshold voltage, which can be used to mimic the regulation of photoresponsivity by horizontal cells for adaptive visual perception. Furthermore, a myelination function that controls the speed of information transmission is obtained according to the inherent asymmetric source/drain structure of a vertical silicon nanowire. This work can enable photoresponsive neuronal function using only a single transistor, providing a promising hardware implementation for building miniaturized neuromorphic vision systems at low cost.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267426PMC
http://dx.doi.org/10.1016/j.bpj.2024.05.023DOI Listing

Publication Analysis

Top Keywords

single transistor
16
mimicking retinal
8
retinal neuron
8
neuron functions
8
photoresponsive single
8
transistor neuron
8
vertical silicon
8
silicon nanowire
8
outer gate
8
inner gate
8

Similar Publications

N-oxide-Functionalized Bipyridines as Strong Electron-Deficient Units to Construct High-Performance n-Type Conjugated Polymers.

Adv Sci (Weinh)

January 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China.

Developing low-cost unipolar n-type organic thin-film transistors (OTFTs) is necessary for logic circuits. To achieve this objective, the usage of new electron-deficient building blocks with simple structure and easy synthetic route is desirable. Among all electron-deficient building units, N-oxide-functionalized bipyridines can be prepared through a simple oxidized transformation of bipyridines.

View Article and Find Full Text PDF

Study on Quantitative Adjustment of CD Bias and Profile Angle in the Wet Etching of Cu-Based Stacked Electrode.

Materials (Basel)

December 2024

Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 400044, China.

The electrodes of thin film transistors (TFTs) have evolved from conventional single Cu layers to multi-layered structures formed by Cu and other metals or alloys. Different etching rates of various metals and galvanic corrosion between distinct metals may cause etching defects such as rough or uneven cross-sectional surfaces of stacked electrodes. Therefore, the etching of stacked electrodes faces new challenges.

View Article and Find Full Text PDF

Two-dimensional Czochralski growth of single-crystal MoS.

Nat Mater

January 2025

Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, P. R. China.

Batch production of single-crystal two-dimensional (2D) transition metal dichalcogenides is one prerequisite for the fabrication of next-generation integrated circuits. Contemporary strategies for the wafer-scale high-quality crystallinity of 2D materials centre on merging unidirectionally aligned, differently sized domains. However, an imperfectly merged area with a translational lattice brings about a high defect density and low device uniformity, which restricts the application of the 2D materials.

View Article and Find Full Text PDF

Separation of Highly Pure Semiconducting Single-Wall Carbon Nanotubes in Alkane Solvents via Double Liquid-Phase Extraction.

Nanomaterials (Basel)

December 2024

Department of Chemistry, University of Sherbrooke, 2500, Blvd de l'Université, Sherbrooke, QC J1K 2R1, Canada.

This study delves into the distinctive selective property exhibited by a non-conjugated cholesterol-based polymer, poly(CEM--EHA), in sorting semiconducting single-walled carbon nanotubes (s-SWCNTs) within isooctane. Comprised of 11 repeating units of cholesteryloxycarbonyl-2-hydroxy methacrylate (CEM) and 7 repeating units of 2-ethylhexyl acrylate (EHA), this non-conjugated polymer demonstrates robust supramolecular interactions across the sp surface structure of carbon nanotubes and graphene. When coupled with the Double Liquid-Phase Extraction (DLPE) technology, the polymer effectively segregates s-SWCNTs into the isooctane phase (nonpolar) while excluding metallic SWCNTs (m-SWCNTs) in the water phase (polar).

View Article and Find Full Text PDF

A stacked nanocomposite zinc-tin oxide/single-walled carbon nanotubes (ZTO/SWNTs) active layer was fabricated for thin-film transistors (TFTs) as an alternative to the conventional single-layer structure of mixed ZTO and SWNTs. The stacked nanocomposite of the solution-processed TFTs was prepared using UV/O treatment and multiple annealing steps for each layer. The electrical properties of the stacked device were superior to those of the single-layer TFT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!