Strenuous exercise can result in disruption of intestinal barrier function and occurrence of gastrointestinal symptoms. The aim of this exploratory study was to elucidate systemic effects of increased intestinal permeability after high-intensity exercise. Forty-one endurance-trained subjects performed a 60-min treadmill run at 80% VOmax. Small intestinal permeability was measured as urinary excretion ratio of lactulose/rhamnose (L/R). Blood, saliva and feces were analyzed for gut barrier and immune-related biomarkers. The exercise challenge increased several markers of intestinal barrier disruption, immune function and oxidative stress. We found a negative correlation between L/R ratio and uric acid (r = -0.480), as well as a positive correlation between the L/R ratio and fecal chromogranin A in male participants (r = 0.555). No significant correlations were found between any of the markers and gastrointestinal symptoms, however, perceived exertion correlated with the combination of IL-6, IL-10 and salivary cortisol (r = 0.492). The lack of correlation between intestinal permeability and gastrointestinal symptoms could be due to minor symptoms experienced in lab settings compared to real-life competitions. The correlation between L/R ratio and uric acid might imply a barrier-protective effect of uric acid, and inflammatory processes due to strenuous exercise seem to play an important role regarding physical exhaustion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116166PMC
http://dx.doi.org/10.14814/phy2.16087DOI Listing

Publication Analysis

Top Keywords

intestinal barrier
12
gastrointestinal symptoms
12
intestinal permeability
12
correlation l/r
12
l/r ratio
12
uric acid
12
markers intestinal
8
immune function
8
high-intensity exercise
8
exercise challenge
8

Similar Publications

l-theanine: From tea leaf to trending supplement - does the science match the hype for brain health and relaxation?

Nutr Res

January 2025

Department of Molecular Medicine, University of Padova, Padova, Italy; IMDEA-Food, Madrid, Spain. Electronic address:

l-Theanine is a unique non-protein amino acid found abundantly in tea leaves. Interest in its potential use as a dietary supplement has surged recently, especially claims related to promoting relaxation and cognitive enhancement. This review surveys the chemistry, metabolism, and purported biological activities of l-theanine.

View Article and Find Full Text PDF

Disturbances of the intestinal barrier enabling bacterial translocation exacerbate alcoholic liver disease (ALD). GG (LGG) has been shown to exert beneficial effects in gut dysbiosis and chronic liver disease. The current study assessed the combined effects of LGG and metformin, which play roles in anti-inflammatory and immunoregulatory processes, in alcohol-induced liver disease mice.

View Article and Find Full Text PDF

Single-cell transcriptomics predict novel potential regulators of acute epithelial restitution in the ischemia-injured intestine.

Am J Physiol Gastrointest Liver Physiol

January 2025

Department of Molecular Biomedical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA.

Intestinal ischemic injury damages the epithelial barrier predisposes patients to life-threatening sepsis unless that barrier is rapidly restored. There is an age-dependency of intestinal recovery in that neonates are the most susceptible to succumb to disease of the intestinal barrier versus older patients. We have developed a pig model that demonstrates age-dependent failure of intestinal barrier restitution in neonatal pigs which can be rescued by the direct application of juvenile pig mucosal tissue, but the mechanisms of rescue remain undefined.

View Article and Find Full Text PDF

The objective of this review is to investigate the impacts of aflatoxins, particularly aflatoxin B1 (AFB), on intestinal microbiota, intestinal health, and growth performance in monogastric animals, primarily chickens and pigs, as well as dietary interventions to mitigate these effects. Aflatoxin B1 contamination in feeds disrupts intestinal microbiota, induces immune responses and oxidative damage, increases antioxidant activity, and impairs jejunal cell viability, barrier function, and morphology in the small intestine. These changes compromise nutrient digestion and reduce growth performance in animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!