Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In vitro use of articular cartilage on an organ-on-a-chip (OOAC) via microfluidics is challenging owing to the dense extracellular matrix (ECM) composed of numerous protein moieties and few chondrocytes, which has limited proliferation potential and microscale translation. Hence, this study proposes a novel approach for using a combination of biopolymers and decellularised ECM (dECM) as a bioink additive in the development of scalable OOAC using a microfluidic platform. The bioink was tested with native chondrocytes and mesenchymal stem cell-induced chondrocytes using biopolymers of alginate and chitosan composite hydrogels. Two-dimensional (2D) and three-dimensional (3D) biomimetic tissue construction approaches have been used to characterise the morphology and cellular marker expression (by histology and confocal laser scanning microscopy), viability (cell viability dye using flow cytometry), and genotypic expression of ECM-specific markers (by quantitative PCR). The results demonstrated that the bioink had a significant impact on the increase in phenotypic and genotypic expression, with a statistical significance level of p < 0.05 according to Student's t-test. The use of a cell-laden biopolymer as a bioink optimised the niche conditions for obtaining hyaline-type cartilage under culture conditions, paving the way for testing mechano-responsive properties and translating these findings to a cartilage-on-a-chip microfluidics system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116456 | PMC |
http://dx.doi.org/10.1038/s41598-024-62656-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!