Neanderthals' lives were historically portrayed as highly stressful, shaped by constant pressures to survive in harsh ecological conditions, thus potentially contributing to their extinction. Recent work has challenged this interpretation, leaving the issue of stress among Paleolithic populations highly contested and warranting in-depth examination. Here, we analyze the frequency of dental enamel hypoplasia, a growth disruption indicator of early life stress, in the largest sample of Neanderthal and Upper Paleolithic dentitions investigated to date for these features. To track potential species-specific patterns in the ontogenetic distribution of childhood stress, we present the first comprehensive Bayesian modelling of the likelihood of occurrence of individual and matched enamel growth disruptions throughout ontogeny. Our findings support similar overall stress levels in both groups but reveal species-specific patterns in its ontogenetic distribution. While Neanderthal children faced increasing likelihoods of growth disruptions starting with the weaning process and culminating in intensity post-weaning, growth disruptions in Upper Paleolithic children were found to be limited around the period of weaning and substantially dropping after its expected completion. These results might, at least in part, reflect differences in childcare or other behavioral strategies between the two taxa, including those that were advantageous for modern humans' long-term survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116461 | PMC |
http://dx.doi.org/10.1038/s41598-024-61321-x | DOI Listing |
J Mammary Gland Biol Neoplasia
January 2025
Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.
View Article and Find Full Text PDFCell Commun Signal
January 2025
College of Life Science, Yangtze University, Jingzhou, 434025, China.
The complex interaction between circadian rhythms and physiological functions is essential for maintaining human health. At the heart of this interaction lies the PERIOD proteins (PERs), pivotal to the circadian clock, influencing the timing of physiological and behavioral processes and impacting oxidative stress, immune functionality, and tumorigenesis. PER1 orchestrates the cooperation of the enzyme GPX1, modulating mitochondrial dynamics in sync with daily rhythms and oxidative stress, thus regulating the mechanisms managing energy substrates.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China.
Drought has a significant impact on ecosystem functions, especially on the biogeochemical cycling of phosphorus (P), which is a crucial nutrient for plant growth and productivity. Despite its importance, the effects of different drought scenarios on soil P cycling and availability remain poorly understood in previous studies. This study simulated drought conditions in tropical soils using maize as a test crop under varying field capacity (FC) levels (100%, 80%, 60%, 40%, and 20%) over a 60-day pot experiment.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Bacterial artificial chromosome transgenic models, including most Cre-recombinases, enable potent interrogation of gene function in vivo but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we perform comprehensive analysis of the Ucp1-Cre line which is widely used for brown fat research. Hemizygotes exhibit major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function.
View Article and Find Full Text PDFNat Commun
January 2025
NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!