Rashba-splitting-induced topological flat band detected by anomalous resistance oscillations beyond the quantum limit in ZrTe.

Nat Commun

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.

Published: May 2024

Topological flat bands - where the kinetic energy of electrons is quenched - provide a platform for investigating the topological properties of correlated systems. Here, we report the observation of a topological flat band formed by polar-distortion-assisted Rashba splitting in the three-dimensional Dirac material ZrTe. The polar distortion and resulting Rashba splitting on the band are directly detected by torque magnetometry and the anomalous Hall effect, respectively. The local symmetry breaking further flattens the band, on which we observe resistance oscillations beyond the quantum limit. These oscillations follow the temperature dependence of the Lifshitz-Kosevich formula but are evenly distributed in B instead of 1/B at high magnetic fields. Furthermore, the cyclotron mass gets anomalously enhanced about 10 times at fields ~ 20 T. Our results provide an intrinsic platform without invoking moiré or order-stacking engineering, which opens the door for studying topologically correlated phenomena beyond two dimensions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116540PMC
http://dx.doi.org/10.1038/s41467-024-48761-9DOI Listing

Publication Analysis

Top Keywords

topological flat
12
flat band
8
resistance oscillations
8
oscillations quantum
8
quantum limit
8
rashba splitting
8
rashba-splitting-induced topological
4
band
4
band detected
4
detected anomalous
4

Similar Publications

The understanding of phenomena falling outside the Ginzburg-Landau paradigm of phase transitions represents a key challenge in condensed matter physics. A famous class of examples is constituted by the putative deconfined quantum critical points between two symmetry-broken phases in layered quantum magnets, such as pressurised SrCu(BO). Experiments find a weak first-order transition, which simulations of relevant microscopic models can reproduce.

View Article and Find Full Text PDF

We report on a class of gapped projected entangled pair states (PEPS) with non-trivial Euler topology motivated by recent progress in band geometry. In the non-interacting limit, these systems have optimal conditions relating to saturation of quantum geometrical bounds, allowing for parent Hamiltonians whose lowest bands are completely flat and which have the PEPS as unique ground states. Protected by crystalline symmetries, these states evade restrictions on capturing tenfold-way topological features with gapped PEPS.

View Article and Find Full Text PDF

Landau Rainbow Induced by Artificial Gauge Fields.

Phys Rev Lett

December 2024

New Cornerstone Science Laboratory, Department of Physics, University of Hong Kong, Hong Kong, China.

The ability to generate Landau levels using a pseudomagnetic field (PMF), also called an artificial gauge field, opens up new pathways for exploring fundamental physics and developing novel applications based on topological protection. In this Letter, we simultaneously realize a PMF and a pseudoelectric field (PEF) on a photonic crystal platform and observe a rainbow effect of the Landau zeroth modes. While a PMF induces a series of discretized Landau levels of photons in a similar way as the quantum Hall effect for electrons, a PEF breaks the degeneracy of the flat band of Landau levels over a broad range.

View Article and Find Full Text PDF

Enhanced Free-Electron-Photon Interactions at the Topological Transition in van der Waals Heterostructures.

Nano Lett

January 2025

Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, California 94305, United States.

Heterostructures composed of graphene and molybdenum trioxide (MoO) can support in-plane hybrid polaritons in the infrared. The isofrequency contour for these subwavelength polaritons can exhibit a quasi-flat region when the topological transition occurs as the doping level of graphene is tuned. Such a topological transition can be useful for optical sensing and imaging at nanoscale.

View Article and Find Full Text PDF

Strong electron-phonon coupling in magic-angle twisted bilayer graphene.

Nature

December 2024

Laboratory for Topological Physics and School of Physical Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China.

The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!