Background: There has been growing interest in using artificial intelligence/deep learning (DL) to help diagnose prevalent diseases earlier. In this study we sought to survey the landscape of externally validated DL-based computer-aided diagnostic (CADx) models, and assess their diagnostic performance for predicting the risk of malignancy in computed tomography (CT)-detected pulmonary nodules.
Methods: An electronic search was performed in four databases (from inception to 10 August 2023). Studies were eligible if they were peer-reviewed experimental or observational articles comparing the diagnostic performance of externally validated DL-based CADx models with models widely used in clinical practice to predict the risk of malignancy. A bivariate random-effect approach for the meta-analysis on the included studies was used.
Results: Seventeen studies were included, comprising 8553 participants and 9884 nodules. Pooled analyses showed DL-based CADx models were 11.6% more sensitive than physician judgement alone, and 14.5% more than clinical risk models alone. They had a similar pooled specificity to physician judgement alone [0.77 (95% CI 0.68-0.84) v 0.81 (95% CI 0.71-0.88)], and were 7.4% more specific than clinical risk models alone. They had superior pooled areas under the receiver operating curve (AUC), with relative pooled AUCs of 1.03 (95% CI 1.00-1.07) and 1.10 (95% CI 1.07-1.13) versus physician judgement and clinical risk models alone, respectively.
Conclusion: DL-based models are already used in clinical practice in certain settings for nodule management. Our results show their diagnostic performance potentially justifies wider, more routine deployment alongside experienced physician readers to help inform multidisciplinary team decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427562 | PMC |
http://dx.doi.org/10.1007/s00408-024-00706-1 | DOI Listing |
J Magn Reson Imaging
January 2025
Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
Breast cancer continues to be a major health concern, and early detection is vital for enhancing survival rates. Magnetic resonance imaging (MRI) is a key tool due to its substantial sensitivity for invasive breast cancers. Computer-aided detection (CADe) systems enhance the effectiveness of MRI by identifying potential lesions, aiding radiologists in focusing on areas of interest, extracting quantitative features, and integrating with computer-aided diagnosis (CADx) pipelines.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil Engineering & Architecture, Institute of Technology, Dire-Dawa University, 1362, Dire Dawa, Ethiopia.
Early detection of colorectal carcinoma (CRC), one of the most prevalent forms of cancer worldwide, significantly enhances the prognosis of patients. This research presents a new method for improving CRC detection using a deep learning ensemble with the Computer Aided Diagnosis (CADx). The method involves combining pre-trained convolutional neural network (CNN) models, such as ADaRDEV2I-22, DaRD-22, and ADaDR-22, using Vision Transformers (ViT) and XGBoost.
View Article and Find Full Text PDFJ Imaging Inform Med
October 2024
Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA.
The purpose of this study is to investigate the impact of using morphological information in classifying suspicious breast lesions. The widespread use of deep transfer learning can significantly improve the performance of the mammogram based CADx schemes. However, digital mammograms are grayscale images, while deep learning models are typically optimized using the natural images containing three channels.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
September 2024
Department of Physics and Computer Science, Faculty of Physics & Engineering Physics, University of Science, Ho Chi Minh City, Vietnam.
Unlabelled: Objective: The three steps of brain image processing - preprocessing, segmentation, and classification are becoming increasingly important in patient care. The aim of this article is to present a proposed method in the mentioned three-steps, with emphasis on the preprocessing step, which includes noise removal and contrast enhancement. Methods: The fast and adaptive bidimensional empirical mode decomposition and the anisotropic diffusion equation as well as the modified combination of top-hat and bottom-hat transforms are used for noise reduction and contrast enhancement.
View Article and Find Full Text PDFLancet Gastroenterol Hepatol
November 2024
Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Endoscopy Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!