Recent research has shown the potential of yeast-based biosensors (YBBs) for point-of-use detection of pathogens and target molecules in saliva, blood, and urine samples. The choice of output can greatly affect the sensitivity, dynamic range, detection time, and ease-of-use of a sensor. For visual detection without the need for additional reagents or machinery, colorimetric outputs have shown great potential. Here, we evaluated the inducible generation of prodeoxyviolacein and proviolacein as colorimetric YBB outputs and benchmarked these against lycopene. The outputs were induced via the yeast mating pathway and were compared on agar plates, in liquid culture, and on paper slips. We found that all three outputs produced comparable pigment intensity on agar plates, making them applicable for bioengineering settings. In liquid media and on paper slips, lycopene resulted in a higher intensity pigment and a decreased time-of-detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166083PMC
http://dx.doi.org/10.1093/femsle/fnae034DOI Listing

Publication Analysis

Top Keywords

colorimetric outputs
8
yeast-based biosensors
8
agar plates
8
paper slips
8
outputs
5
evaluation comparison
4
comparison colorimetric
4
outputs yeast-based
4
biosensors laboratory
4
laboratory point-of-use
4

Similar Publications

The incidence of cervical cancer continues to rise in underdeveloped regions due to low human papillomavirus (HPV) vaccination rates and inadequate screening systems. To achieve convenient, rapid, and accurate detection of HPV, we developed a three-wire lateral flow strip assay system based on dual-OR logic gates for rapid and simultaneous detection of HPV subtypes 16 and 18 in a single test. The system combines three-branch-catalytic hairpin assembly (TCHA)-mediated signal amplification with simple OR logic gate-based signal output to improve detection rates while enabling HPV 16/18 subtype identification.

View Article and Find Full Text PDF

Background-free luminescent and chromatic assay for strong visual detection of creatinine.

Talanta

January 2025

Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. Electronic address:

Creatinine is an essential biomarker for the clinical diagnosis and treatment of renal insufficiency. Although fluorescent methods are powerful tools for creatinine detection, almost all reported fluorescent probes rely on short-wavelength excitation and a single fluorescent signal, making them susceptible to environmental and operational conditions. In this study, a near-infrared excited, highly sensitive, and multi-output signal sensing system was established using upconversion nanoparticles and 3,5-dinitrobenzoic acid (DNBA) for synergistic luminescent and colorimetric assay for strong visual detection of creatinine.

View Article and Find Full Text PDF

Catechins in tea, as promoters of human health, have attracted widespread attention. Herein, a dual-signal mode (colorimetric and fluorescence) sensor array for catechin species fingerprinting was built based on PtNi bunched nanoparticle (PtNi-BNP)--phenylenediamine (OPD)-HO system. PtNi-BNPs catalyze the reaction between OPD and HO to produce oxidized OPD (oxOPD) with both colorimetric (yellow) and fluorescent properties.

View Article and Find Full Text PDF

Portable paper-based microfluidic devices based on CuS@AgS nanocomposites for colorimetric/electrochemical dual-mode detection of dopamine.

Biosens Bioelectron

January 2025

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China. Electronic address:

The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution.

View Article and Find Full Text PDF

Multifunctional Nanozyme with Aptamer-Based Ratiometric Fluorescent and Colorimetric Dual Detection of Prostate-Specific Antigen.

ACS Appl Mater Interfaces

January 2025

Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

The adsorption of DNA probes onto nanomaterials represents a promising bioassay technique, generally employing fluorescence or catalytic activity to generate signals. A significant challenge is maintaining the catalytic activity of chromogenic catalysts during detection while enhancing accuracy by overcoming the limitations of single-signal transmission. This article presents an innovative multimodal analysis approach that synergistically combines the oxidase-like activity of Fe-N-C nanozyme (Fe-NC) with red fluorescent carbon quantum dots (R-CQDs), further advancing the dual-mode analysis method utilizing R-CQDs@Fe-NC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!