This study investigated the function of AMP deaminase 1 (AMPD1) in Jingyuan chicken and the biological activity of its expression vector. AMPD1 was cloned and sequenced from chicken breast muscle tissue by RT-PCR and further analyzed using Cluster, DNASTAR, and online bioinformatics software, as well as vector construction, qPCR, Western blotting, enzymatic digestion, and sequencing. The coding sequence was 2162 bp, encoding 683 amino acids and producing a protein of approximately 78.95 kDa. After verification, the overexpression plasmids pEGFP-AMPD1, Cas9/sgRNA2, and Cas9/sgRNA3 were found to have biological activity in chicken muscle cells and individual chickens, and two sgRNAs (sgRNA2, sgRNA3) were identified that could edit AMPD1. The qPCR and Western blotting result showed that the pEGFP-AMPD1 plasmid significantly increased both mRNA and protein expression of AMPD1. T7EI digestion showed editing efficiencies of approximately 35 %, 37 %, and 33 % for sgRNA2, sgRNA3, and sgRNA2 + sgRNA3 of AMPD1 in chicken muscle cells. In comparison, TA cloning sequencing showed editing efficiencies of approximately 36.7 %, 86.7 %, and 26.7 % and editing efficiencies in chicken individuals of approximately 71 %, 45 %, and 76.7 %, respectively. These results provide a theoretical basis and support for further investigation into the function of the AMPD1 gene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.132546 | DOI Listing |
Microbiol Spectr
January 2025
Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.
Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .
View Article and Find Full Text PDFMol Ther
January 2025
Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, 53715, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53715, USA. Electronic address:
Natural killer (NK) cells are an appealing off-the-shelf, allogeneic cellular therapy due to their cytotoxic profile. However, their activity against solid tumors remains suboptimal in part due to the upregulation of NK-inhibitory ligands, such as HLA-E, within the tumor microenvironment. Here, we utilize CRISPR-Cas9 to disrupt the KLRC1 gene (encoding the HLA-E-binding NKG2A receptor) and perform non-viral insertion of a GD2-targeting chimeric antigen receptor (CAR) within NK cells isolated from human peripheral blood.
View Article and Find Full Text PDFSci Transl Med
January 2025
College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.
Macrophages play a central role in antitumor immunity, making them an attractive target for gene therapy strategies. However, macrophages are difficult to transfect because of nucleic acid sensors that can trigger the degradation of foreign plasmid DNA. Here, we developed a macrophage-specific editing (MAGE) system by which compact plasmid DNA encoding a CasRx editor can be delivered to macrophages by a poly(β-amino ester) (PBAE) carrier to bypass the DNA sensor and enable RNA editing in vitro and in vivo.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Astronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710065, China.
The single-atom skeletal editing technology is an efficient method for constructing molecular skeletons, which has broad coverage in synthetic chemistry. However, its potential in the preparation of energetic heterocyclic molecules is grossly underexplored. In this work, an unexpected one-step reaction for the synthesis of novel energetic molecules was discovered which combines single-atom skeletal editing, -dinitromethyl functionalization, and zwitterionization in one step.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea.
With recent advancements in gene editing technology using the CRISPR/Cas system, there is a demand for more effective gene editors. A key factor facilitating efficient gene editing is effective CRISPR delivery into cells, which is known to be associated with the size of the CRISPR system. Accordingly, compact CRISPR-Cas systems derived from various strains are discovered, among which Un1Cas12f1 is 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!