Introduction: The rapid development of next-generation sequencing (NGS)-based single-cell RNA sequencing (scRNA-seq) allows for detecting and quantifying gene expression in a high-throughput manner, providing a powerful tool for comprehensively understanding cellular function in various biological processes. However, the NGS-based scRNA-seq only quantifies gene expression and cannot reveal the exact transcript structures (isoforms) of each gene due to the limited read length. On the other hand, the long read length of third-generation sequencing (TGS) technologies, including Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio), enable direct reading of intact cDNA molecules.
Objectives: Both ONT and PacBio have been used in conjunction with scRNA-seq, but their performance in single-cell analyses has not been systematically evaluated.
Methods: To address this, we generated ONT and PacBio data from the same single-cell cDNA libraries containing different amount of cells.
Results: Using NGS as a control, we assessed the performance of each platform in cell type identification. Additionally, the reliability in identifying novel isoforms and allele-specific gene/isoform expression by both platforms was verified, providing a systematic evaluation to design the sequencing strategies in single-cell transcriptome studies.
Conclusion: Beyond gene expression analysis, which the NGS-based scRNA-seq only affords, TGS-based scRNA-seq achieved gene splicing analyses, identifying novel isoforms. Attribute to higher sequencing quality of PacBio, it outperforms ONT in accuracy of novel transcripts identification and allele-specific gene/isoform expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jare.2024.05.020 | DOI Listing |
Brief Bioinform
November 2024
School of Engineering, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P.R. China.
Single-cell RNA sequencing (scRNA-seq) offers remarkable insights into cellular development and differentiation by capturing the gene expression profiles of individual cells. The role of dimensionality reduction and visualization in the interpretation of scRNA-seq data has gained widely acceptance. However, current methods face several challenges, including incomplete structure-preserving strategies and high distortion in embeddings, which fail to effectively model complex cell trajectories with multiple branches.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Guangdong Provincial Key Laboratory of Mathematical and Neural Dynamical Systems, Great Bay University, No. 16 Daxue Rd, Songshanhu District, Dongguan, Guangdong, 523000, China.
Multimodal omics provide deeper insight into the biological processes and cellular functions, especially transcriptomics and proteomics. Computational methods have been proposed for the integration of single-cell multimodal omics of transcriptomics and proteomics. However, existing methods primarily concentrate on the alignment of different omics, overlooking the unique information inherent in each omics type.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
Centre for Heart Lung Innovation, University of British Columbia, Vancouver. (K.H., M.A., L.R., Y.L., A.S., H.H., L.R.B., Z.W.L.).
Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.
Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.
Hum Gene Ther
January 2025
Department of Internal Medicine V, University Hospital Schleswig-Holstein and University of Kiel, Kiel, Germany.
Adeno-associated viral (AAV) vectors are increasingly used for preclinical and clinical cardiac gene therapy approaches. However, gene transfer to cardiomyocytes poses a challenge due to differences between AAV serotypes in terms of expression efficiency and . For example, AAV9 vectors work well in rodent heart muscle cells but not in cultivated neonatal rat ventricular cardiomyocytes (NRVCMs), necessitating the use of AAV6 vectors for studies.
View Article and Find Full Text PDFMicrolife
January 2025
DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
Although not essential for their growth, the production of secondary metabolites increases the fitness of the producing microorganisms in their natural habitat by enhancing establishment, competition, and nutrient acquisition. The Gram-positive soil-dwelling bacterium, , produces a variety of secondary metabolites. Here, we investigated the regulatory relationship between the non-ribosomal peptide surfactin and the sactipeptide bacteriocin subtilosin A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!