The prevalence of pollen allergies is a pressing global issue, with projections suggesting that half of the world's population will be affected by 2050 according to the estimation of the World Health Organization (WHO). Accurately forecasting pollen allergy risks requires identifying key factors and their thresholds for aerosol pollen. To address this, we developed a technical framework combining advanced machine learning and SHapley Additive exPlanations (SHAP) technology, focusing on Beijing. By analyzing meteorological data and vegetation phenology, we identified the factors influencing next-day's pollen concentration (NDP) in Beijing and their thresholds. Our results highlight vegetation phenology data from Synthetic Aperture Radar (SAR), temperature, wind speed, and atmospheric pressure as crucial factors in spring. In contrast, the Normalized Difference Vegetation Index (NDVI), air temperature, and wind speed are significant in autumn. Leveraging SHAP technology, we established season-specific thresholds for these factors. Our study not only confirms previous research but also unveils seasonal variations in the relationship between radar-derived vegetation phenology data and NDP. Additionally, we observe seasonal fluctuations in the influence patterns and threshold values of daily air temperatures on NDP. These insights are pivotal for improving pollen concentration prediction accuracy and managing allergic risks effectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173430 | DOI Listing |
Zhonghua Yu Fang Yi Xue Za Zhi
December 2024
Department of Allergy, ShengJing Hospital of China Medical Universty, Shenyang110000, China.
Ragweed, as an exotic invasive species, which is one of the most important allergens for hay fever, has been invading China for more than 80 years. The increasing number of people with hay fever makes effective treatment, as well as the prevention and control of pollen transmission critical. This article delves into a comprehensive research summary focusing on the allergenic properties of ragweed pollen, its pathogenic characteristics, epidemiological patterns, monitoring and control measures, as well as concentrated management approaches.
View Article and Find Full Text PDFToxicol Res (Camb)
December 2024
Bee Research Department, Plant Protection Research Institute, Agricultural Research Center, Dokki 12619, Giza, EGYPT.
A growing trend in understanding human health involves looking at the bigger picture by examining all potential environmental exposures that may cause health risks, with a particular focus on dietary intake of anthropogenic chemicals. This study investigated the presence of pesticide residues in honey and pollen samples collected randomly from ten locations in four agricultural governorates during the spring season of 2023 in the Nile Delta, Egypt. A QuEChERS extraction was employed for sample preparation before GC-MS analysis for pesticide residues.
View Article and Find Full Text PDFEnviron Microbiome
December 2024
Scion, Christchurch, 8011, New Zealand.
Background: Pollen is a crucial source of nutrients and energy for pollinators. It also provides a unique habitat and resource for microbiota. Previous research on the microbiome of pollen has largely focused on angiosperm systems, with limited research into coniferous gymnosperms.
View Article and Find Full Text PDFSci Total Environ
December 2024
Grupo de Estudios Botánicos GEOBOTA, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
Aerobiology in the tropics is still a science in development, where very little about their dynamics is known. Airborne pollen concentrations in the city of Medellín (Colombia) were measured using a Hirst-type sampler and correlated with meteorological parameters (relative humidity, rainfall, temperature, wind speed, and wind direction, this last analyzed by using circular statistics). Sampling was conducted over three years (2019-2022), and pollen grains were detected on all days of sampling, at higher concentrations than expected for tropical conditions.
View Article and Find Full Text PDFEnviron Res
December 2024
Environmental Health Science & Research Bureau, Health Canada, Canada. Electronic address:
Airborne algae have been associated with respiratory illness in the setting of coastal harmful algae blooms but little is known about their effects in urban populations distributed across a country, and whether ambient air pollution is an effect modifier. Using cross-sectional data from 11,256 participants of the Canadian Health Measures Survey (CHMS), we tested the association between lung function expressed as a forced expiratory volume (FEV) and airborne concentrations of algae measured by a rotation impact sampler in the participant's city of residence on the day of spirometric testing. The daily upper 95th percentiles of algae ranged from 12.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!