Genes are the basic units of protein synthesis in organisms, and accurately identifying the translation initiation site (TIS) of genes is crucial for understanding the regulation, transcription, and translation processes of genes. However, the existing models cannot adequately extract the feature information in TIS sequences, and they also inadequately capture the complex hierarchical relationships among features. Therefore, a novel predictor named CapsNet-TIS is proposed in this paper. CapsNet-TIS first fully extracts the TIS sequence information using four encoding methods, including One-hot encoding, physical structure property (PSP) encoding, nucleotide chemical property (NCP) encoding, and nucleotide density (ND) encoding. Next, multi-scale convolutional neural networks are used to perform feature fusion of the encoded features to enhance the comprehensiveness of the feature representation. Finally, the fused features are classified using capsule network as the main network of the classification model to capture the complex hierarchical relationships among the features. Moreover, we improve the capsule network by introducing residual block, channel attention, and BiLSTM to enhance the model's feature extraction and sequence data modeling capabilities. In this paper, the performance of CapsNet-TIS is evaluated using TIS datasets from four species: human, mouse, bovine, and fruit fly, and the effectiveness of each part is demonstrated by performing ablation experiments. By comparing the experimental results with models proposed by other researchers, the results demonstrate the superior performance of CapsNet-TIS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2024.148598 | DOI Listing |
Scand J Gastroenterol
January 2025
Department of Internal Medicine, Section of Gastroenterology, Esbjerg Hospital - University Hospital of Southern Denmark, Esbjerg, Denmark.
Background And Aims: Prior studies indicate that serum calprotectin (SC) and plasma calprotectin (PC) can be used as biomarkers in Crohn's disease (CD). The aim of this study was to investigate the diagnostic accuracy of SC and PC in patients with a clinical suspicion of CD.
Method: This biobank study included patients from a prospective, blinded, multicenter study examining minimally invasive modalities for diagnosing CD.
Sci Rep
January 2025
Department of Computer Science and Engineering, E.G.S. Pillay Engineering College, Nagapattinam, 611002, Tamil Nadu, India.
In response to the pressing need for the detection of Monkeypox caused by the Monkeypox virus (MPXV), this study introduces the Enhanced Spatial-Awareness Capsule Network (ESACN), a Capsule Network architecture designed for the precise multi-class classification of dermatological images. Addressing the shortcomings of traditional Machine Learning and Deep Learning models, our ESACN model utilizes the dynamic routing and spatial hierarchy capabilities of CapsNets to differentiate complex patterns such as those seen in monkeypox, chickenpox, measles, and normal skin presentations. CapsNets' inherent ability to recognize and process crucial spatial relationships within images outperforms conventional CNNs, particularly in tasks that require the distinction of visually similar classes.
View Article and Find Full Text PDFJ Clin Med
January 2025
Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal.
Several artificial intelligence systems based on large language models (LLMs) have been commercially developed, with recent interest in integrating them for clinical questions. Recent versions now include image analysis capacity, but their performance in gastroenterology remains untested. This study assesses ChatGPT-4's performance in interpreting gastroenterology images.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Beijing Institute of Space Launch Technology, Beijing 100076, China.
When using a fiber optic gyroscope as the core measurement element in an inertial navigation system, its work stability and reliability directly affect the accuracy of the navigation system. The modeling and fault diagnosis of the gyroscope is of great significance in ensuring the high accuracy and long endurance of the inertial system. Traditional diagnostic models often encounter challenges in terms of reliability and accuracy, for example, difficulties in feature extraction, high computational cost, and long training time.
View Article and Find Full Text PDFTomography
December 2024
Department of Computer Engineering, Faculty of Engineering, Karabük University, Karabük 78050, Türkiye.
Unlabelled: Due to the increasing number of people working at computers in professional settings, the incidence of lumbar disc herniation is increasing.
Background/objectives: The early diagnosis and treatment of lumbar disc herniation is much more likely to yield favorable results, allowing the hernia to be treated before it develops further. The aim of this study was to classify lumbar disc herniations in a computer-aided, fully automated manner using magnetic resonance images (MRIs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!