The colonization of aquatic to terrestrial habitats by brachyuran crabs requires genetic innovations as well as morphological adaptations to adapt to terrestrial environments. The genetic basis of such adaptive evolution, however, is largely unknown. This study focuses on terrestrialization in Geograpsus (Grapsidae) the only highly terrestrial genus in this family, which represents a notable example of terrestrial adaptive radiation. Here, we sequenced the mitogenomes of two Geograpsus species and used the mitogenomes of 215 representative crabs to construct phylogenetic and time frameworks that we used to infer terrestrial origins and evolution. Using mitochondrial genomic data, we demonstrated that marine crab ancestors began to settle on land during the early Eocene. Ocean acidification, the Paleocene-Eocene Thermal Maximum (PETM), and mangrove expansion at that time may have driven the diversification and ecological expansion of these terrestrial crabs. Evolutionary analyses reveal strong positive selection signals on monophyletic lineages of Grapsidae, especially the terrestrial species of Geograpsus. Positively selected sites in functionally important regions of ND5 and ND4 may imply enhanced energy metabolism in Grapsidae compared to other crabs, and may have played an important role in their terrestrial adaptation. Overall, our work provides valuable resources and opportunities to reveal the adaptation of crabs to complex terrestrial environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2024.148594 | DOI Listing |
Sci Rep
December 2024
Department of Ecology, Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság útja 6, Pécs, 7624, Hungary.
The European pond turtle (Emys orbicularis) is a wide-ranging, long-living freshwater species with low reproductive success, mainly due to high predation pressure. We studied how habitat variables and predator communities in near-natural marshes affect the survival of turtle eggs and hatchlings. We followed the survival of artificial turtle nests placed in marshes along Lake Balaton (Hungary) in May and June as well as hatchlings (dummies) exposed in September.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, P.R. China.
Denitrification and anaerobic ammonium oxidation (anammox) are the major microbial processes responsible for global nitrogen (N) loss. Yet, the relative contributions of denitrification and anammox to N loss across contrasting terrestrial and aquatic ecosystems worldwide remain unclear, hampering capacities to predict the human alterations in the global N cycle. Here, a global synthesis including 3240 observations from 199 published isotope pairing studies is conducted and finds that denitrification governs microbial N loss globally (79.
View Article and Find Full Text PDFEcol Lett
January 2025
Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany.
Trait-based approaches have been increasingly used to relate plants to soil microbial communities. Using the recently described root economics space as an approach to explain the structure of soil-borne fungal communities, our study in a grassland diversity experiment reveals distinct root trait strategies at the plant community level. In addition to significant effects of plant species richness, we show that the collaboration and conservation gradient are strong drivers of the composition of the different guilds of soil fungi.
View Article and Find Full Text PDFEcol Lett
January 2025
Asian School of the Environment, Nanyang Technological University, Singapore, Singapore.
Insects represent most of terrestrial animal biodiversity, and multiple reports suggest that their populations are declining globally due to anthropogenic impacts. Yet, a high proportion of insect species remain undescribed and limited data on their population dynamics hamper insect conservation efforts. This is particularly critical in tropical biodiversity hotspots such as Southeast Asia.
View Article and Find Full Text PDFEcol Lett
January 2025
Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden.
Empirical studies worldwide show that warming has variable effects on plant litter decomposition, leaving the overall impact of climate change on decomposition uncertain. We conducted a meta-analysis of 109 experimental warming studies across seven continents, using natural and standardised plant material, to assess the overarching effect of warming on litter decomposition and identify potential moderating factors. We determined that at least 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!