Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Posterior Capsule Opacification (PCO), the most frequent complication of cataract surgery, is caused by the infiltration and proliferation of lens epithelial cells (LECs) at the interface between the intraocular lens (IOL) and posterior lens capsule (PLC). According to the "no space, no cells, no PCO" theory, high affinity (or adhesion force) between the IOL and PLC would decrease the IOL: PLC interface space, hinder LEC migration, and thus reduce PCO formation. To test this hypothesis, an in vitro hemisphere-shaped simulated PLC (sPLC) was made to mimic the human IOL: PLC physical interactions and to assess their influence on LEC responses. Three commercially available IOLs with different affinities/adhesion forces toward the sPLC, including Acrylic foldable IOL, Silicone IOL, and PMMA IOL, were used in this investigation. Using the system, the physical interactions between IOLs and sPLC were quantified by measuring the adhesion force and interface space using an adhesion force apparatus and Optical Coherence Tomography, respectively. Our data shows that high adhesion force and tight binding between IOL and sPLC contribute to a small interface space (or "no space"). By introducing LECs into the in vitro system, we found that, with small interface space, among all IOLs, acrylic foldable IOLs permitted the least extent of LEC infiltration, proliferation, and differentiation (or "no cells"). Further statistical analyses using clinical data revealed that weak LEC responses are associated with low clinical PCO incidence rates (or "no PCO"). The findings support that the in vitro system could simulate IOL: PLC interplays and predict IOLs' PCO potential in support of the "no space, no cells, no PCO" hypothesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246700 | PMC |
http://dx.doi.org/10.1016/j.exer.2024.109940 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!