Global distribution and environmental correlates of marine bioturbation.

Curr Biol

Department of Earth and Planetary Sciences, Yale University, P.O. Box 208109, New Haven, CT 06520, USA. Electronic address:

Published: June 2024

The activities of marine sediment-dwelling invertebrates play a fundamental role in mediating major biogeochemical cycles and have profoundly shaped the evolution of marine systems. Yet there remains a paucity of global marine data describing bioturbation intensities and mixed layer depths and interrogating how these vary with multiple environmental and ecological factors at a system scale. We applied an ensemble of tree-based machine learning techniques to resolve a global map and determine the environmental and ecological correlates most closely associated with bioturbation. We find that bioturbation intensity and the depth of the sediment mixed layer each reflect different associations with a consortium of environmental and ecological parameters, and that bioturbation intensities are much more readily predicted than sediment mixed layer depths from these correlates. Furthermore, we find that the bioturbation intensity, the depth of the sediment mixed layer, and their environmental and ecological correlates differ between shallow marine and open-ocean settings. Our findings provide new insights into the importance of potential drivers of ancient sediment mixing recorded by geologic archives. These results also highlight that climate change may, in the near future, drive shifts in bioturbation and reciprocal fundamental changes in benthic functioning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2024.04.065DOI Listing

Publication Analysis

Top Keywords

mixed layer
16
environmental ecological
16
sediment mixed
12
bioturbation intensities
8
layer depths
8
ecological correlates
8
find bioturbation
8
bioturbation intensity
8
intensity depth
8
depth sediment
8

Similar Publications

Lithium-sulfur batteries have been recognized as one of the excellent candidates for next-generation energy storage batteries because of their high energy density and low cost and low pollution. However, lithium-sulfur batteries have been challenged by low conductivity, low sulfur utilization, poor cycle life, and the shuttle effect of polysulfides. To address these problems, we report here an independent mixed sulfur host.

View Article and Find Full Text PDF

We investigate the impact of poly adenine (poly-A) sequences on the type and stability of liquid crystalline (LC) phases formed by concentrated solutions of gapped DNA (two duplex arms bridged by a flexible single strand) using synchrotron small-angle X-ray scattering and polarizing optical microscopy. While samples with mixed sequence form layered (smectic) phases, poly-A samples demonstrate a columnar phase at lower temperatures (5-35 °C), not previously observed in GDNA samples, and a smectic-B phase of exceptional stability at higher temperatures (35-65 °C). We present a model that connects the formation of these LC phases with the unique characteristics of poly-A sequences, which manifest in various biological contexts, including DNA condensation and nucleosome formation.

View Article and Find Full Text PDF

Investigating the interactions between a poloxamer and TEMPO-oxidised cellulose nanocrystals.

Carbohydr Polym

March 2025

Bristol Composites Institute, School of Civil, Aerospace, and Design Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK. Electronic address:

Cellulose nanocrystals (CNCs) have emerged as promising, sustainable materials, with applications in sensors, coatings, pharmaceuticals, and composites. Their modification with block copolymers such as PEO-PPO-PEO triblock copolymers of the Pluronic family has been attempted many times in the literature, with claims that such modification would happen by an anchor(PEO)-buoy(PPO)-anchor(PEO) mechanism. However, there is much disagreement in the literature on this.

View Article and Find Full Text PDF

Longitudinal Changes of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer in Highly Myopic Glaucoma: A 3-year Cohort Study.

Ophthalmology

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510623, China. Electronic address:

Purpose: To describe the longitudinal changes in peripapillary retinal nerve fiber layer (pRNFL) and macular ganglion cell-inner plexiform layer (mGC-IPL) thicknesses in highly myopic eyes with and without glaucoma, and to investigate the effects of high myopia (HM) on the sectoral patterns of pRNFL and mGC-IPL thinning.

Design: Longitudinal cohort study.

Participants: A total of 243 eyes from 243 individuals with 3-year follow-up were included in this study: 109 eyes in the HM group, 64 eyes in the open-angle glaucoma (OAG) group and 70 eyes in the highly myopic glaucoma (HMG) group.

View Article and Find Full Text PDF

Urban stormwater pollution poses serious risks to human and environmental health, including trace metals toxicity. To improve the performance of existing highway Vegetated Filter Strips (VFS), which have limited performance for volume reduction and pollutant removal, amendment with a Vegetated Compost Blanket (VCB), a layer of seeded compost, has been proposed. A novel VCB/VFS system was assessed as a Stormwater Control Measure (SCM) via particulate matter and trace metals removal performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!