Canola protein obtained from canola meal, a byproduct of the canola industry, is an economical biopolymer with promising film-forming properties. It has significant potential for use as a food packaging material, though it possesses some functional limitations that need improvement. Incorporating nanomaterials is an option to enhance functional properties. This study aims to produce canola protein films by integrating GO exfoliated at several oxidation times and weight ratios to optimize mechanical, thermal, and barrier properties. Oxidation alters the C/O ratio and adds functional groups that bond with the amino/carboxyl groups of protein, enhancing the film properties. Significant improvement was obtained in GO at 60 and 120 min oxidation time and 3% addition level. Tensile strength and elastic modulus increased 200% and 481.72%, respectively, compared to control. Control films showed a 37.57 × 10 cmm/m/day/Pa oxygen permeability, and it was significantly reduced to 5.65 × 10 cmm/m/day/Pa representing a 665% reduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.139693 | DOI Listing |
Prog Neuropsychopharmacol Biol Psychiatry
December 2024
Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil. Electronic address:
Amphetamine (AMPH) abuse represents a major global public health issue, highlighting the urgent need for effective therapeutic interventions to manage addiction caused by this psychostimulant. This study aimed to assess the potential of m-trifluoromethyl-diphenyldiselenide [(m-CF-PhSe)] in preventing the addictive effects induced by AMPH through targeting dopamine metabolism proteins. (m-CF-PhSe) is of interest due to its demonstrated efficacy in mitigating opioid abuse, establishing it as a promising candidate for addiction treatment research.
View Article and Find Full Text PDFJ Exp Bot
December 2024
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
Phosphorus (P) is an essential macronutrient for the growth and yield of crops. However, there is limited understanding of the regulatory mechanisms of phosphate (Pi) homeostasis, and its impact on growth, development, and yield-related traits in Brassica napus. Here, we identified four NITROGEN LIMITATION ADAPATATION1 (BnaNLA1) genes in B.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland.
Background: Silicon has an important role in regulating water management in plants. It is deposited in cell walls and creates a mechanical barrier against external factors. The aim of this study was to determine the role of silicon supplementation in the synthesis and distribution of callose in oilseed rape roots and to characterize the modifications of cell wall structure of these organs after exposure to drought stress.
View Article and Find Full Text PDFData Brief
December 2024
IGEPP, INRAE, Institut Agro, Université de Rennes, Le Rheu 35650, France.
Winter oilseed rape (WOSR, L.) is the third largest oil crop worldwide that also provides a source of high quality plant-based proteins. Nitrogen (N) and carbon (C) play a key role in plant growth.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430000, China.
Background: The three-amino-acid-loop-extension (TALE) superfamily genes are broadly present in plants and play important roles in plant growth, development, and abiotic stress responses. So far, the TALE family in B.napus have not been systematically studied, especially their potential roles in response to abiotic stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!