In-situ groundwater remediation of contaminant mixture of As(III), Cr(VI), and sulfanilamide via electrochemical degradation/transformation using pyrite.

J Hazard Mater

Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, the Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, the Republic of Korea. Electronic address:

Published: July 2024

Electrochemical advanced oxidation processes (EAOPs) are effective in removing persistent contaminants from groundwater. However, their practical applicability depends significantly on various site-specific characteristics. Therefore, the primary objective of this investigation was to study the feasibility of EAOPs and pyrite, which is a sulfide mineral, to effectively remove the mixture of arsenic (As (III)), chromium (Cr (VI)), and sulfanilamide in groundwater. We conducted a comparison of three systems: (1) EAOP alone, (2) pyrite alone, and (3) a combined EAOP and pyrite system. In EAOP alone, sulfanilamide was effectively oxidized (80%), while the electrochemical transformation of As(III)/Cr(VI) into As(V)/Cr(III) was limited. In just the pyrite system, As(III), Cr(VI), and sulfanilamide were adsorbed onto the surface of pyrite (60%, 20%, and 18%). Neither the EAOP nor the pyrite system alone could effectively treat the contaminants mixture. Nonetheless, the combined system completely removed As(III), Cr(VI), and sulfanilamide by the synergistic reaction. This could be attributed to the formation of green rust, a natural adsorbent mineral produced as a reaction of dissolved iron, generated via electrochemical pyrite oxidation, with the groundwater electrolyte (e.g., CO or SO). This system harmonized the combined approach of EAOP and pyrite to effectively eliminate both organic and inorganic contaminants. ENVIRONMENTAL IMPLICATION: A paper proposed electrochemical oxidation (EO) with pyrite to remove both organic and inorganic contaminants from groundwater. The removal performance of the combined system was evaluated, and the synergistic mechanism was revealed. The combination of EO and pyrite with synergistic removal effectively removed the mixture of both contaminants. This could be attributed by the formation of green-rust by electrochemical activation for pyrite. Compared to the single system of EO and pyrite alone, the combined system with EO and pyrite improved removal performance. Results suggested that the combined system could be used for green groundwater remediation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166511PMC
http://dx.doi.org/10.1016/j.jhazmat.2024.134648DOI Listing

Publication Analysis

Top Keywords

eaop pyrite
16
combined system
16
pyrite
14
asiii crvi
12
crvi sulfanilamide
12
pyrite system
12
system
9
groundwater remediation
8
contaminants groundwater
8
pyrite combined
8

Similar Publications

In-situ groundwater remediation of contaminant mixture of As(III), Cr(VI), and sulfanilamide via electrochemical degradation/transformation using pyrite.

J Hazard Mater

July 2024

Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, the Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, the Republic of Korea. Electronic address:

Electrochemical advanced oxidation processes (EAOPs) are effective in removing persistent contaminants from groundwater. However, their practical applicability depends significantly on various site-specific characteristics. Therefore, the primary objective of this investigation was to study the feasibility of EAOPs and pyrite, which is a sulfide mineral, to effectively remove the mixture of arsenic (As (III)), chromium (Cr (VI)), and sulfanilamide in groundwater.

View Article and Find Full Text PDF

The mineralization of a new azo dye - the (4-amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid) (AHPS) - has been studied by a novel electrochemical advanced oxidation process (EAOP), consisting in electro-Fenton (EF) oxidation, catalyzed by pyrite as the heterogeneous catalyst - the so-called 'pyrite-EF'. This solid pyrite used as heterogeneous catalyst instead of a soluble iron salt, is the catalyst the system needs for production of hydroxyl radicals. Experiments were performed in an undivided cell equipped with a BDD anode and a commercial carbon felt cathode to electrogenerate in situ H2O2 and regenerate ferrous ions as catalyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!