Adsorption and desorption processes of toxic heavy metals, regeneration and reusability of spent adsorbents: Economic and environmental sustainability approach.

Adv Colloid Interface Sci

Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Adnan Kassar School of Business, Lebanese American University, Beirut, Lebanon; Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248007, India; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India; Division of Research & Development, Lovely Professional University, Phagwara 144411, Punjab, India.

Published: July 2024

A growing number of variables, including rising population, water scarcity, growth in the economy, and the existence of harmful heavy metals in the water supply, are contributing to the increased demand for wastewater treatment on a global scale. One of the innovative water treatment technologies is the adsorptive removal of heavy metals through the application of natural and engineered adsorbents. However, adsorption currently has setbacks that prevent its wider application for heavy metals sequestration from aquatic environments using various adsorbents, including difficulty in selecting suitable desorption eluent to recover adsorbed heavy metals and regeneration techniques to recycle the spent adsorbents for further use and safe disposal. Therefore, the recovery of adsorbed heavy metal ions and the ability to reuse the spent adsorbents is one of the economic and environmental sustainability approaches. This study presents a state-of-the-art critical review of different desorption agents that could be used to retrieve heavy metals and regenerate the spent adsorbents for further adsorption-desorption processes. Additionally, an attempt was made to discuss and summarize some of the independent factors influencing heavy metals desorption, recovery, and adsorbent regeneration. Furthermore, isotherm and kinetic modeling have been summarized to provide insights into the adsorption-desorption mechanisms of heavy metals. Finally, the review provided future perspectives to provide room for researchers and industry players who are interested in heavy metals desorption, recovery, and spent adsorbents recycling to reduce the high cost of adsorbents reproduction, minimize secondary waste generation, and thereby provide substantial economic and environmental benefits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2024.103196DOI Listing

Publication Analysis

Top Keywords

heavy metals
36
spent adsorbents
20
economic environmental
12
heavy
10
metals
9
metals regeneration
8
adsorbents
8
adsorbents economic
8
environmental sustainability
8
adsorbed heavy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!