In recent years, the intensive production of nanoparticles with a wide application has led to their transfer to the environment, including the water ecosystem. The accumulation of nanoparticles in fish, causing various pathological changes in the host, raises certain concerns. In the current study, we investigated the penetration and bioaccumulation of FeO nanoparticles, in the liver of common carp (Cyprinus carpio Linnaeus, 1758). Common carp juveniles were exposed to FeO nanoparticles at concentrations of 10 and 100 mg. After 7 days, their livers were examined by light and transmission electron microscopes. Compared to normal fish's liver, after using a small concentration (10 mg) of nanoparticles, changes were observed in erythrocytes, hepatocytes, intracellular canaliculi, and bile ducts of the liver. At a high concentration (100 mg), the intensity of changes increased significantly. The liver's capsule was damaged, and a considerable number of hepatocytes were completely destroyed. Additionally, the walls of blood vessels and biliary ductule walls was notably disturbed. It was found that the intensity of pathologies occurring in the liver, increases proportionally with higher concentrations of nanoparticles. Confirmation via electron microscopic methods revealed that FeO nanoparticles, when administered with food to common carp, enter the fish's liver through erythrocytes localized in the lumen of blood vessels. From there, they traverse through the endothelium of vessels, proceed to hepatocytes, including cytoplasmic organelles, intracellular canaliculi, biliary ductules, and eventually reach the bile ducts. FeO nanoparticles in all structural elements of fish liver was up to 20 nm. Therefore, high concentrations of nanoparticles in the environment harms the bodies of aquatic organisms, including fish. The changes identified in the liver of common carp in the present study are valuable information in assessing possible risks to other components of the aquatic ecosystem and organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2024.106961 | DOI Listing |
Front Immunol
December 2024
Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.
From ancient cold-blooded fishes to mammals, all vertebrates are protected by adaptive immunity, and retain immunological memory. Although immunologists can demonstrate these phenomena in all fish, the responding cells remain elusive, without the tools to study them nor markers to define them. Fundamentally, we posited that it is longevity that defines a memory cell, like how it is antibody production that defines a plasma cell.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China.
The prevalence of heatwave and hypoxia events and their devastating impacts on aquatic ecosystems and fishery resources reinforces the priority of research to address the resilience and adaption mechanisms to these two stressors in important fish species. However, our understanding of the development of cross-tolerance of these two stressors in fish still limited. Here, we investigated the impacts of prior heatwave exposure on hypoxia tolerance and the underlying mechanisms in silver carp (Hypophthalmichthys molitrix), a species of considerable ecological and commercial importance.
View Article and Find Full Text PDFBiol Trace Elem Res
December 2024
Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
Open Vet J
November 2024
Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Open Vet J
November 2024
Department of Pathology and Poultry Disease, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!