Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
TiCT MXene demonstrates excellent potential as an anode material for sodium-ion capacitors. However, the narrow interlayer spacing and self-stacking phenomenon limit its applicability. In this study, we demonstrate an easy two-step method involving freezing and crumpling of MXene nanosheets to improve their Na-ion storage via the addition of ammonium ions (referred to as FCM nanosheets). Flat MXene particles aggregate and undergo folding in an alkaline solution. Ammonium ions can penetrate the gaps between MXene nanosheets, expanding interlayer spaces and inducing the formation of folds. Compared to MXene nanosheets, FCM nanosheets exhibit improved ion transfer kinetics and additional high capacity owing to the intercalated ammonium ions. The manufactured FCM anode exhibits remarkable electrochemical properties, including a high specific capacity of 313 mAhg and stability over 15,000 cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.05.124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!