The ability to detect and image short-wave infrared light has important applications in surveillance, autonomous navigation, and biological imaging. However, the current infrared imaging technologies often pose challenges due to large footprint, large thermal noise and inability to augment infrared and visible imaging. Here, infrared imaging is demonstrated by nonlinear up-conversion to the visible in an ultra-compact, high-quality-factor lithium niobate resonant metasurface. Images with high conversion efficiency and resolution quality are obtained despite the strong nonlocality of the metasurface. The possibility of edge-detection image processing augmented with direct up-conversion imaging for advanced night vision applications is further shown.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202402777 | DOI Listing |
Adv Mater
December 2024
Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin, 300071, China.
With the development of optical anti-counterfeiting and the increasing demand for high-level information encryption, multimodal luminescence (MML) materials attract much attention. However, the discovery of these multifunctional materials is very accidental, and the versatile host suitable for developing such materials remains unclear. Here, a grossite-type fast ionic conductor CaGaO, characterized by layered and tunnel structure with excellent defect tolerance, is found to meet the needs of various luminescent processes.
View Article and Find Full Text PDFMid-infrared (MIR) microcombs exhibit remarkable advantages for trace molecule detection, facilitating fast and precise spectral analysis. However, due to limitations in tunability and size of available MIR pump sources, it is difficult to achieve compact MIR mode-locked microcombs using traditional methods. Here, we propose the turnkey generation of MIR soliton and near-infrared second-harmonic microcombs in a single microresonator.
View Article and Find Full Text PDFSensors (Basel)
September 2024
Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Qingdao 266237, China.
Terahertz spectroscopy systems, which integrate terahertz sources and detectors, have important applications in many fields such as materials science and security checking. Based on highly sensitive frequency up-conversion detection, large dynamic range spectral measurements in a terahertz region are reported. Our system realized the detection sensitivity at a 10 aJ level with a 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene) malononitrile (OH1) crystal and a dynamic range up to seven orders.
View Article and Find Full Text PDFJ Phys Chem A
August 2024
Lab for Advanced Materials, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China.
As two-photon absorption (TPA) materials, phthalocyanine molecules have promising application prospects due to their large TPA absorption cross-section, high third-order nonlinear optical susceptibility, and ultrafast response characteristics. In this work, optical properties and the ultrafast response of three modified zinc phthalocyanine molecules (P-HPcZn, Pc-P-Pc, and (DR1)PcZn) were analyzed. No obvious side-shoulder absorption peaks in the Q-band can be observed from the steady-state absorption spectra of the three molecules, confirming the lack of aggregation products in the solutions of our measurement.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2024
Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
The study has demonstrated a novel microcavity-based flexible photon up-conversion system using second harmonic generation (SHG) from a polar nematic fluidic medium doped with a laser dye. The idea is based on coherent light generation via stimulated emission (lasing) and simultaneous frequency doubling inside a microcavity. The polar nematic fluid equips very high even-order optical nonlinearity due to its polar symmetry and large dipole moment along the molecular long axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!