Phlebotomine sand flies are important vectors of medical and veterinary importance, transmitting pathogens, such as the Leishmania parasites, responsible for 700,000 to 1 million new cases of leishmaniasis every year. The vast majority of the current sand fly surveillance and control tools are tailored against the adult stages, due to the limited knowledge on the ecology of the larval stages. Since vector control is primarily an ecological problem, an in-depth understanding of the behavior of the target insect pests across all the different life stages of their development is required prior to the development of effective control strategies. It is well known that chemical cues play an important role in insect behavior. While there are numerous studies investigating the behavior of adult sand flies in response to chemical sources, there is currently no information available on the response of their larval stages. In this study, novel bioassays were constructed to investigate the effect of chemical cues (gustatory and olfactory) on the behavior of Phlebotomus papatasi (Scopoli) sand fly larvae. The larvae exhibited a clear food preference within a few hours of exposure in a 2-choice bioassay, while, also, demonstrated positive chemotaxis in response to volatile stimuli emitted from their preferred food source. Identification of the specific chemical compounds (or the combination thereof) eliciting attractance response to sand fly immature stages could lead to the development of innovative, and targeted (larval-specific) tools for the surveillance, and management of these important public health pests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519023 | PMC |
http://dx.doi.org/10.1093/jme/tjae072 | DOI Listing |
PLoS One
January 2025
Hebei Yingsheng New Material Technology Co., Ltd., Shijiazhuang, China.
Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.
View Article and Find Full Text PDFNat Commun
January 2025
School of Infection and Immunity, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
For the protozoan parasite Leishmania, completion of its life cycle requires sequential adaptation of cellular physiology and nutrient scavenging mechanisms to the different environments of a sand fly alimentary tract and the acidic mammalian host cell phagolysosome. Transmembrane transporters are the gatekeepers of intracellular environments, controlling the flux of solutes and ions across membranes. To discover which transporters are vital for survival as intracellular amastigote forms, we carried out a systematic loss-of-function screen of the L.
View Article and Find Full Text PDFFront Insect Sci
December 2024
Millennium Institute Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile.
Despite increasing awareness of the threats they pose, exotic species continue to arrive in Antarctica with anthropogenic assistance, some of which inevitably have the potential to become aggressively invasive. Here, we provide the first report of the globally cosmopolitan species (Diptera, Psychodidae; commonly known as moth flies) in Antarctica during the austral summer of 2021/2022, with the identification confirmed using traditional taxonomic and molecular approaches. The species was present in very large numbers and, although predominantly associated with the drainage and wastewater systems of Antarctic national operator stations in synanthropic situations, it was also present in surrounding natural habitats.
View Article and Find Full Text PDFTrop Med Infect Dis
December 2024
Evolutionary Ecology Group, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium.
is a vector of , the causative agent of cutaneous leishmaniasis. This study assessed the abundance and distribution of in different habitats and human houses situated at varying distances from hyrax (reservoir host) dwellings, in Wolaita Zone, southern Ethiopia. Sandflies were collected from January 2020 to December 2021 using CDC light traps, sticky paper traps, and locally made emergence traps.
View Article and Find Full Text PDFPLoS Negl Trop Dis
December 2024
Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement Travail), UMR S 1085, Rennes, France.
Background: Leishmaniasis, caused by Leishmania protozoan parasites transmitted by Phlebotomine sand flies, is a significant public health concern in the Mediterranean basin. Effective monitoring of Leishmania-infected sand flies requires standardized tools for comparing their distribution and infection prevalence. Consistent quantitative real-time PCR (qPCR) parameters and efficient DNA extraction protocols are crucial for reliable results over time and across regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!