In layered Li-rich materials, over stoichiometric Li forms an ordered occupation of LiTM in transition metal (TM) layer, showing a honeycomb superstructure along [001] direction. At the atomic scale, the instability of the superstructure at high voltage is the root cause of problems such as capacity/voltage decay of Li-rich materials. Here a Li-rich material with a high Li/Ni disorder is reported, these interlayer Ni atoms locate above the honeycomb superstructure and share adjacent O coordination with honeycomb TM. These Ni─O bonds act as cable-stayed bridge to the honeycomb plane, and improve the high-voltage stability. The cable-stayed honeycomb superstructure is confirmed by in situ X-ray diffraction to have a unique cell evolution mechanism that it can alleviate interlaminar lattice strain by promoting in-plane expansion along a-axis and inhibiting c-axis stretching. Electrochemical tests also demonstrate significantly improved long cycle performance after 500 cycles (86% for Li-rich/Li half cell and 82% for Li-rich/Si-C full cell) and reduced irreversible oxygen release. This work proves the feasibility of achieving outstanding stability of lithium-rich materials through superstructure regulation and provides new insights for the development of the next-generation high-energy-density cathodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202404982 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!