Pseudomonas aeruginosa is a pathogen that infects wounds and burns and causes severe infections in immunocompromised humans. The high virulence, the rise of antibiotic-resistant strains, and the easy transmissibility of P. aeruginosa necessitate its fast detection and control. The gold standard for detecting P. aeruginosa, the plate culture method, though reliable, takes several days to complete. Therefore, developing accurate, rapid, and easy-to-use diagnostic tools for P. aeruginosa is highly desirable. Nanomaterial-based biosensors are at the forefront of detecting P. aeruginosa and its secondary metabolites. This review summarises the biorecognition elements, biomarkers, immobilisation strategies, and current state-of-the-art biosensors for P. aeruginosa. The review highlights the underlying principles of bioreceptor layer engineering and the design of optical, electrochemical, mass-based, and thermal biosensors based on nanomaterials. The advantages and disadvantages of these biosensors and their future point-of-care applications are also discussed. This review outlines significant advancements in biosensors and sensors for detecting P. aeruginosa and its metabolites. Research efforts have identified biorecognition elements specific and selective towards P. aeruginosa. The stability, ease of preparation, cost-effectiveness, and integration of these biorecognition elements onto transducers are pivotal for their application in biosensors and sensors. At the same time, when developing sensors for clinically significant analytes such as P. aeruginosa, virulence factors need to be addressed, such as the sensor's sensitivity, reliability, and response time in samples obtained from patients. The point-of-care applicability of the developed sensor may be an added advantage since it enables onsite determination. In this context, optical methods developed for P. aeruginosa offer promising potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202400090 | DOI Listing |
Clin Optom (Auckl)
March 2019
Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA.
Background: The Antibiotic Resistance Monitoring in Ocular micRoorganisms study is an ongoing surveillance study that tracks antibiotic resistance among bacterial isolates from ocular infections across the United States. We report antibiotic resistance rates and trends from 2009 through 2016.
Materials And Methods: , coagulase-negative staphylococci (CoNS), , , and from various ocular infections were obtained from participating United States centers.
J Microbiol Methods
March 2019
School of Public Health, Division of Infectious Disease and Vaccinology, University of California, Berkeley, CA 94720, USA. Electronic address:
Gram-negative bacteria (GNB) are important causes of community (CA) and hospital (HA)- associated infections. Here we describe the development of an indirect ELISA (I-ELISA), which can be used to detect and differentiate the Enterobacteriaceae Escherichia coli, and glucose non-fermenter Pseudomonas aeruginosa from other GNB species. The I-ELISA utilizes six antibodies for bacterial speciation, which were grouped according to their bacterial targets; Enterobacteriaceae (SL-EntA and CH1810 mAb), Escherichia coli (SL-EcA and 6103-46 mAb), Pseudomonas aeruginosa (SL-PaA and SL-PaB).
View Article and Find Full Text PDFNanotechnology
March 2018
Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Ruta Nacional N° 36, Km 601, Agencia Postal N° 3, 5800, Río Cuarto, Argentina.
Polyaniline nanoparticles (PANI-NPs) were easily obtained applying the solvent displacement method by using N-methylpyrrolidone (NMP) as good solvent and water as poor solvent. Different polymers such as polyvinylpyrrolidone (PVP), chondroitin sulfate (ChS), polyvinyl alcohol (PVA), and polyacrylic acid (PAA) were used as stabilizers. Dynamic light scattering and scanning electron microscopy corroborated the size and morphology of the formed NPs.
View Article and Find Full Text PDFCan J Microbiol
May 2017
a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Phenylacetic acid (PAA), an intermediate of phenylalanine degradation, is emerging as a signal molecule in microbial interactions with the host. In this work, we explore the presence of phenylalanine and PAA catabolism in 3 microbial pathogens of the cystic fibrosis (CF) lung microbiome: Pseudomonas aeruginosa, Burkholderia cenocepacia, and Aspergillus fumigatus. While in silico analysis of B.
View Article and Find Full Text PDFInt J Food Microbiol
June 2009
Department of Medicine and Public Health, Division of Hygiene, University of Bologna, Via S. Giacomo, 12-40126 Bologna, Italy.
The abilities of peracetic acid and hydrogen peroxide to remove or reduce Pseudomonas aeruginosa and Stenotrophomonas maltophilia in output water from microfiltered water dispensers (MWDs) were investigated. Two MWDs were inoculated with strains of P. aeruginosa and S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!