Despite accumulating evidence that blood flow restriction (BFR) training promotes muscle hypertrophy and strength gain, the underlying neurophysiological mechanisms have rarely been explored. The primary goal of this study is to investigate characteristics of cerebral cortex activity during BFR training under different pressure intensities. 24 males participated in 30% 1RM squat exercise, changes in oxygenated hemoglobin concentration (HbO) in the primary motor cortex (M1), pre-motor cortex (PMC), supplementary motor area (SMA), and dorsolateral prefrontal cortex (DLPFC), were measured by fNIRS. The results showed that HbO increased from 0 mmHg (non-BFR) to 250 mmHg but dropped sharply under 350 mmHg pressure intensity. In addition, HbO and functional connectivity were higher in M1 and PMC-SMA than in DLPFC. Moreover, the significant interaction effect between pressure intensity and ROI for HbO revealed that the regulation of cerebral cortex during BFR training was more pronounced in M1 and PMC-SMA than in DLPFC. In conclusion, low-load resistance training with BFR triggers acute responses in the cerebral cortex, and moderate pressure intensity achieves optimal neural benefits in enhancing cortical activation. M1 and PMC-SMA play crucial roles during BFR training through activation and functional connectivity regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11115316PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303983PLOS

Publication Analysis

Top Keywords

cerebral cortex
16
bfr training
16
functional connectivity
12
pressure intensity
12
activation functional
8
low-load resistance
8
resistance training
8
blood flow
8
flow restriction
8
pmc-sma dlpfc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!