A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using routinely collected clinical data for circadian medicine: A review of opportunities and challenges. | LitMetric

Using routinely collected clinical data for circadian medicine: A review of opportunities and challenges.

PLOS Digit Health

Divisions of Pulmonary and Sleep Medicine and Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America.

Published: May 2024

A wealth of data is available from electronic health records (EHR) that are collected as part of routine clinical care in hospitals worldwide. These rich, longitudinal data offer an attractive object of study for the field of circadian medicine, which aims to translate knowledge of circadian rhythms to improve patient health. This narrative review aims to discuss opportunities for EHR in studies of circadian medicine, highlight the methodological challenges, and provide recommendations for using these data to advance the field. In the existing literature, we find that data collected in real-world clinical settings have the potential to shed light on key questions in circadian medicine, including how 24-hour rhythms in clinical features are associated with-or even predictive of-health outcomes, whether the effect of medication or other clinical activities depend on time of day, and how circadian rhythms in physiology may influence clinical reference ranges or sampling protocols. However, optimal use of EHR to advance circadian medicine requires careful consideration of the limitations and sources of bias that are inherent to these data sources. In particular, time of day influences almost every interaction between a patient and the healthcare system, creating operational 24-hour patterns in the data that have little or nothing to do with biology. Addressing these challenges could help to expand the evidence base for the use of EHR in the field of circadian medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11115276PMC
http://dx.doi.org/10.1371/journal.pdig.0000511DOI Listing

Publication Analysis

Top Keywords

circadian medicine
24
circadian
8
field circadian
8
circadian rhythms
8
time day
8
data
7
clinical
6
medicine
6
routinely collected
4
collected clinical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!