A hybrid feature weighted attention based deep learning approach for an intrusion detection system using the random forest algorithm.

PLoS One

Faculty of Computing and Information Technology in Rabigh (FCITR), Department of Information Systems, King Abdulaziz University, Jeddah, Saudi Arabia.

Published: May 2024

Due to the recent advances in the Internet and communication technologies, network systems and data have evolved rapidly. The emergence of new attacks jeopardizes network security and make it really challenging to detect intrusions. Multiple network attacks by an intruder are unavoidable. Our research targets the critical issue of class imbalance in intrusion detection, a reflection of the real-world scenario where legitimate network activities significantly out number malicious ones. This imbalance can adversely affect the learning process of predictive models, often resulting in high false-negative rates, a major concern in Intrusion Detection Systems (IDS). By focusing on datasets with this imbalance, we aim to develop and refine advanced algorithms and techniques, such as anomaly detection, cost-sensitive learning, and oversampling methods, to effectively handle such disparities. The primary goal is to create models that are highly sensitive to intrusions while minimizing false alarms, an essential aspect of effective IDS. This approach is not only practical for real-world applications but also enhances the theoretical understanding of managing class imbalance in machine learning. Our research, by addressing these significant challenges, is positioned to make substantial contributions to cybersecurity, providing valuable insights and applicable solutions in the fight against digital threats and ensuring robustness and relevance in IDS development. An intrusion detection system (IDS) checks network traffic for security, availability, and being non-shared. Despite the efforts of many researchers, contemporary IDSs still need to further improve detection accuracy, reduce false alarms, and detect new intrusions. The mean convolutional layer (MCL), feature-weighted attention (FWA) learning, a bidirectional long short-term memory (BILSTM) network, and the random forest algorithm are all parts of our unique hybrid model called MCL-FWA-BILSTM. The CNN-MCL layer for feature extraction receives data after preprocessing. After convolution, pooling, and flattening phases, feature vectors are obtained. The BI-LSTM and self-attention feature weights are used in the suggested method to mitigate the effects of class imbalance. The attention layer and the BI-LSTM features are concatenated to create mapped features before feeding them to the random forest algorithm for classification. Our methodology and model performance were validated using NSL-KDD and UNSW-NB-15, two widely available IDS datasets. The suggested model's accuracies on binary and multi-class classification tasks using the NSL-KDD dataset are 99.67% and 99.88%, respectively. The model's binary and multi-class classification accuracies on the UNSW-NB15 dataset are 99.56% and 99.45%, respectively. Further, we compared the suggested approach with other previous machine learning and deep learning models and found it to outperform them in detection rate, FPR, and F-score. For both binary and multiclass classifications, the proposed method reduces false positives while increasing the number of true positives. The model proficiently identifies diverse network intrusions on computer networks and accomplishes its intended purpose. The suggested model will be helpful in a variety of network security research fields and applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11115263PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302294PLOS

Publication Analysis

Top Keywords

intrusion detection
16
random forest
12
forest algorithm
12
class imbalance
12
deep learning
8
detection system
8
network
8
network security
8
detect intrusions
8
false alarms
8

Similar Publications

Insider threats pose a significant challenge to IT security, particularly with the rise of generative AI technologies, which can create convincing fake user profiles and mimic legitimate behaviors. Traditional intrusion detection systems struggle to differentiate between real and AI-generated activities, creating vulnerabilities in detecting malicious insiders. To address this challenge, this paper introduces a novel Deep Synthesis Insider Intrusion Detection (DS-IID) model.

View Article and Find Full Text PDF

The widespread use of wireless networks to transfer an enormous amount of sensitive information has caused a plethora of vulnerabilities and privacy issues. The management frames, particularly authentication and association frames, are vulnerable to cyberattacks and it is a significant concern. Existing research in Wi-Fi attack detection focused on obtaining high detection accuracy while neglecting modern traffic and attack scenarios such as key reinstallation or unauthorized decryption attacks.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluated SMS text reminders for colorectal cancer screening in Catalonia, finding that they were less effective than standard postal reminders in increasing participation rates.
  • The trial involved over 24,000 participants aged 50 to 69 and was halted early due to lower than expected participation in the SMS group (17.2% vs. 21.9% for control).
  • Despite initial low participation, a recovery strategy of sending additional postal reminders to nonparticipants in the SMS group improved overall participation rates to 29.3%.
View Article and Find Full Text PDF

Subslab soil gas (SSSG) samples were collected as part of an investigation to evaluate vapor intrusion (VI) into a building. The June 2015 Office of Solid Waste and Emergency Response (OSWER) VI Guide (U.S.

View Article and Find Full Text PDF

Vehicle-to-everything (V2X) communication has many benefits. It improves fuel efficiency, road safety, and traffic management. But it raises privacy and security concerns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!