Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: To establish and evaluate an ultra-fast MRI screening protocol for prostate cancer (PCa) in comparison to the standard multiparametric (mp) protocol, reducing scan time and maintaining adequate diagnostic performance.
Materials And Methods: This prospective single-center study included consecutive biopsy-naïve patients with suspected PCa between December 2022 and March 2023. A PI-RADSv2.1 conform mpMRI protocol was acquired in a 3 T scanner (scan time: 25 min 45 sec). In addition, two deep-learning (DL) accelerated sequences (T2- and diffusion-weighted) were acquired, serving as a screening protocol (scan time: 3 min 28 sec). Two readers evaluated image quality and the probability of PCa regarding PI-RADSv2.1 scores in two sessions. The diagnostic performance of the screening protocol with mpMRI serving as the reference standard was derived. Inter- and intra-reader agreements were evaluated using weighted kappa statistics.
Results: We included 77 patients with 97 lesions (mean age: 66 years; SD: 7.7). Diagnostic performance of the screening protocol was excellent with a sensitivity and specificity of 100%/100% and 89%/98% (cut-off ≥ PI-RADS 4) for reader 1 (R1) and reader 2 (R2), respectively. Mean image quality was 3.96 (R1) and 4.35 (R2) for the standard protocol vs. 4.74 and 4.57 for the screening protocol (p < 0.05). Inter-reader agreement was moderate (κ: 0.55) for the screening protocol and substantial (κ: 0.61) for the multiparametric protocol.
Conclusion: The ultra-fast screening protocol showed similar diagnostic performance and better imaging quality compared to the mpMRI in under 15% of scan time, improving efficacy and enabling the implementation of screening protocols in clinical routine.
Clinical Relevance Statement: The ultra-fast protocol enables examinations without contrast administration, drastically reducing scan time to 3.5 min with similar diagnostic performance and better imaging quality. This facilitates patient-friendly, efficient examinations and addresses the conflict of increasing demand for examinations at currently exhausted capacities.
Key Points: Time-consuming MRI protocols are in conflict with an expected increase in examinations required for prostate cancer screening. An ultra-fast MRI protocol shows similar performance and better image quality compared to the standard protocol. Deep-learning acceleration facilitates efficient and patient-friendly examinations, thus improving prostate cancer screening capacity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519108 | PMC |
http://dx.doi.org/10.1007/s00330-024-10776-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!