Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Adsorption in nanoporous materials is one strategy that can be used to store hydrogen at conditions of temperature and pressure that are economically viable. Adsorption capacity of nanoporous materials depends on surface area which can be enhanced by incorporating a hierarchical pore structure. We report grand canonical Monte Carlo (GCMC) simulation results on the adsorption of hydrogen in hierarchical models of silicalite that incorporate 4 nm wide mesopores in addition to the 0.5 nm wide micropores at 298 K, using different force fields to model hydrogen. Our results suggest that incorporating mesopores in silicalite can enhance adsorption by at least 20 % if electrostatic interactions are not included and up to 100 % otherwise. Incorporating electrostatic interactions results in higher adsorption by close to 100 % at lower pressures for hierarchical silicalite whereas for unmodified silicalite, it is less significant at all pressures. Hydroxylating the mesopore surface in hierarchical silicalite results in an enhancement in adsorption at pressures below 1 atm and suppression by up to 20 % at higher pressures. Temperature dependence at selected pressures exhibits expected decrease in adsorption amounts at higher temperatures. These findings can be useful in the engineering, selection, and optimization of nanoporous materials for hydrogen storage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.202400360 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!