Recent advances in paclitaxel biosynthesis and regulation.

J Exp Bot

Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK.

Published: January 2025

AI Article Synopsis

  • Paclitaxel (PTX) is a valuable cancer treatment derived from yew trees and is increasingly in demand for new applications.
  • Recent research has advanced our knowledge of how PTX is made in plants, revealing two functional gene sets that could allow production in other organisms.
  • There are efforts to address the challenges of producing PTX in cell cultures by manipulating epigenetic factors, which may enhance its production in the future.

Article Abstract

Paclitaxel (PTX) is a high value plant natural product derived from Taxus (yew) species. This plant specialized metabolite (PSM) and its derivatives constitute a cornerstone for the treatment of an increasing variety of cancers. New applications for PTX also continue to emerge, further promoting demand for this WHO-designated essential medicine. Here we review recent advances in our understanding of PTX biosynthesis and its cognate regulation, which have been enabled by the development of transcriptomic approaches and the recent sequencing and annotation of three Taxus genomes. Collectively, this has resulted in the elucidation of two functional gene sets for PTX biosynthesis, unlocking new potential for the use of heterologous hosts to produce PTX. Knowledge of the PTX pathway also provides a valuable resource for understanding the regulation of this key PSM. Epigenetic regulation of PSM in plant cell culture is a major concern for PTX production, given the loss of PSM production in long-term cell cultures. Recent developments aim to design tools for manipulating epigenetic regulation, potentially providing a means to reverse the silencing of PSM caused by DNA methylation. Exciting times clearly lie ahead for our understanding of this key PSM and improving its production potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659180PMC
http://dx.doi.org/10.1093/jxb/erae240DOI Listing

Publication Analysis

Top Keywords

ptx biosynthesis
8
key psm
8
epigenetic regulation
8
ptx
7
psm
6
regulation
5
advances paclitaxel
4
paclitaxel biosynthesis
4
biosynthesis regulation
4
regulation paclitaxel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!